| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4 | ⊢ |
| : , : , : , : |
1 | reference | 8 | ⊢ |
2 | instantiation | 17, 31, 5, 6* | ⊢ |
| : , : , : |
3 | instantiation | 20 | ⊢ |
| : |
4 | instantiation | 21, 7 | ⊢ |
| : , : |
5 | instantiation | 8, 9, 10, 11 | ⊢ |
| : , : , : , : |
6 | instantiation | 12, 77, 59, 42, 43, 13, 14*, 15* | ⊢ |
| : , : , : , : |
7 | instantiation | 30, 16 | ⊢ |
| : , : |
8 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
9 | instantiation | 17, 60, 18, 19* | ⊢ |
| : , : , : |
10 | instantiation | 20 | ⊢ |
| : |
11 | instantiation | 21, 22 | ⊢ |
| : , : |
12 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.md_nine_add_one |
13 | instantiation | 23, 24 | ⊢ |
| : |
14 | instantiation | 34, 35, 59, 41, 25, 61, 26 | ⊢ |
| : , : , : , : , : , : , : |
15 | instantiation | 27, 28, 29 | ⊢ |
| : , : , : |
16 | instantiation | 39, 40, 36, 42 | ⊢ |
| : , : |
17 | axiom | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_incr |
18 | instantiation | 68 | ⊢ |
| : , : , : , : , : , : , : , : , : |
19 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_9_1 |
20 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
21 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
22 | instantiation | 30, 31 | ⊢ |
| : , : |
23 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_is_pos |
24 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
25 | instantiation | 45, 59 | ⊢ |
| : , : |
26 | instantiation | 46, 47 | ⊢ |
| : , : , : |
27 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
28 | instantiation | 32, 33 | ⊢ |
| : , : , : |
29 | instantiation | 34, 35, 59, 36, 37, 61, 38 | ⊢ |
| : , : , : , : , : , : , : |
30 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len |
31 | instantiation | 39, 40, 41, 42, 43 | ⊢ |
| : , : |
32 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
33 | instantiation | 44, 65 | ⊢ |
| : |
34 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_portion_substitution |
35 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
36 | instantiation | 48 | ⊢ |
| : , : |
37 | instantiation | 45, 59 | ⊢ |
| : , : |
38 | instantiation | 46, 47 | ⊢ |
| : , : , : |
39 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.deci_sequence_is_nat |
40 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
41 | instantiation | 48 | ⊢ |
| : , : |
42 | instantiation | 50, 49, 52 | ⊢ |
| : , : , : |
43 | instantiation | 50, 51, 52 | ⊢ |
| : , : , : |
44 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
45 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.range_from1_len_typical_eq |
46 | axiom | | ⊢ |
| proveit.core_expr_types.tuples.empty_range_def |
47 | instantiation | 53, 54, 55 | ⊢ |
| : , : , : |
48 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
49 | instantiation | 58, 77, 56, 57 | ⊢ |
| : , : , : , : , : |
50 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
51 | instantiation | 58, 59, 60, 61, 62 | ⊢ |
| : , : , : , : , : |
52 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.N_leq_9_enumSet |
53 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
54 | instantiation | 63, 65 | ⊢ |
| : |
55 | instantiation | 64, 65, 66 | ⊢ |
| : , : |
56 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat8 |
57 | instantiation | 67 | ⊢ |
| : , : , : , : , : , : , : , : |
58 | theorem | | ⊢ |
| proveit.logic.sets.enumeration.in_enumerated_set |
59 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
60 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat9 |
61 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
62 | instantiation | 68 | ⊢ |
| : , : , : , : , : , : , : , : , : |
63 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
64 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
65 | instantiation | 75, 69, 70 | ⊢ |
| : , : , : |
66 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
67 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_8_typical_eq |
68 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_9_typical_eq |
69 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
70 | instantiation | 75, 71, 72 | ⊢ |
| : , : , : |
71 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
72 | instantiation | 75, 73, 74 | ⊢ |
| : , : , : |
73 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
74 | instantiation | 75, 76, 77 | ⊢ |
| : , : , : |
75 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
76 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
77 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
*equality replacement requirements |