| step type | requirements | statement |
0 | instantiation | 1, 2, 3* | , , ⊢  |
| : , :  |
1 | reference | 20 | ⊢  |
2 | modus ponens | 4, 5 | , , ⊢  |
3 | instantiation | 12, 6, 7 | , , ⊢  |
| : , : , :  |
4 | instantiation | 8, 32, 69, 33, 9, 34 | ⊢  |
| : , : , : , : , : , : , : , : , : , :  |
5 | generalization | 10 | , , ⊢  |
6 | instantiation | 23, 11 | , ⊢  |
| : , : , :  |
7 | instantiation | 12, 13, 14, 15* | , , ⊢  |
| : , : , :  |
8 | theorem | | ⊢  |
| proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation |
9 | instantiation | 16, 55, 56, 70 | ⊢  |
| : , : , :  |
10 | instantiation | 54, 55, 56, 70, 17, 18, 19 | , , ⊢  |
| : , : , : , :  |
11 | instantiation | 20, 21 | , ⊢  |
| : , :  |
12 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
13 | instantiation | 31, 67, 33, 32, 34, 70, 58, 22 | , , ⊢  |
| : , : , : , : , : , : , : , : , : , :  |
14 | instantiation | 23, 24 | , , ⊢  |
| : , : , :  |
15 | instantiation | 25, 26, 27, 61, 28* | , , ⊢  |
| : , : , : , : , :  |
16 | theorem | | ⊢  |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
17 | instantiation | 62 | ⊢  |
| : , :  |
18 | instantiation | 30, 70, 67, 58 | , ⊢  |
| : , : , : , :  |
19 | instantiation | 30, 70, 67, 71 | , ⊢  |
| : , : , : , :  |
20 | theorem | | ⊢  |
| proveit.logic.equality.equals_reversal |
21 | modus ponens | 29, 59 | , ⊢  |
22 | instantiation | 30, 70, 67, 59 | , ⊢  |
| : , : , : , :  |
23 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
24 | instantiation | 31, 67, 32, 33, 34, 70, 58, 59 | , , ⊢  |
| : , : , : , : , : , : , : , : , : , :  |
25 | theorem | | ⊢  |
| proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
26 | instantiation | 35, 42 | ⊢  |
| :  |
27 | instantiation | 44, 36, 37 | , ⊢  |
| : , : , :  |
28 | instantiation | 38, 61, 39* | ⊢  |
| : , :  |
29 | instantiation | 40, 69, 70, 67 | ⊢  |
| : , : , : , : , : , : , :  |
30 | theorem | | ⊢  |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
31 | theorem | | ⊢  |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
32 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
33 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
34 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
35 | theorem | | ⊢  |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
36 | instantiation | 41, 42, 43 | ⊢  |
| : , : , :  |
37 | instantiation | 44, 45, 46 | , ⊢  |
| : , : , :  |
38 | axiom | | ⊢  |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
39 | instantiation | 47, 61, 69, 48*, 49* | ⊢  |
| : , : , :  |
40 | theorem | | ⊢  |
| proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum |
41 | theorem | | ⊢  |
| proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
42 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat9 |
43 | instantiation | 50, 66 | ⊢  |
| : , :  |
44 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.unfold_subset_eq |
45 | instantiation | 51, 55, 52, 73, 53* | ⊢  |
| : , : , :  |
46 | instantiation | 54, 55, 56, 70, 57, 58, 59 | , ⊢  |
| : , : , : , :  |
47 | theorem | | ⊢  |
| proveit.numbers.exponentiation.product_of_posnat_powers |
48 | instantiation | 60, 61 | ⊢  |
| :  |
49 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.add_1_1 |
50 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.relax_proper_subset |
51 | theorem | | ⊢  |
| proveit.linear_algebra.tensors.tensor_prod_of_cart_exps_within_cart_exp |
52 | instantiation | 62 | ⊢  |
| : , :  |
53 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.mult_3_3 |
54 | theorem | | ⊢  |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
55 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat2 |
56 | instantiation | 62 | ⊢  |
| : , :  |
57 | instantiation | 62 | ⊢  |
| : , :  |
58 | assumption | | ⊢  |
59 | modus ponens | 63, 64 | ⊢  |
60 | theorem | | ⊢  |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
61 | instantiation | 65, 66, 67 | ⊢  |
| : , : , :  |
62 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
63 | instantiation | 68, 69, 70 | ⊢  |
| : , : , : , : , : , :  |
64 | generalization | 71 | ⊢  |
65 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
66 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
67 | assumption | | ⊢  |
68 | theorem | | ⊢  |
| proveit.linear_algebra.addition.summation_closure |
69 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat1 |
70 | instantiation | 72, 73 | ⊢  |
| :  |
71 | assumption | | ⊢  |
72 | theorem | | ⊢  |
| proveit.linear_algebra.real_vec_set_is_vec_space |
73 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat3 |
*equality replacement requirements |