logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import beta, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.logic import Equals
from proveit.numbers import Interval, four, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = ScalarMult(beta, VecSum(index_or_indices = [i], summand = y, domain = Interval(two, four)))
expr = Equals(TensorProd(ScalarMult(beta, x), sub_expr1), ScalarMult(beta, TensorProd(x, sub_expr1))).with_wrapping_at(1)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(\left(\beta \cdot x\right) {\otimes} \left(\beta \cdot \left(\sum_{i=2}^{4} y\right)\right)\right) \\  = \left(\beta \cdot \left(x {\otimes} \left(\beta \cdot \left(\sum_{i=2}^{4} y\right)\right)\right)\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(1)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 10
operands: 5
4Operationoperator: 14
operands: 6
5ExprTuple7, 13
6ExprTuple16, 8
7Operationoperator: 14
operands: 9
8Operationoperator: 10
operands: 11
9ExprTuple16, 12
10Literal
11ExprTuple12, 13
12Variable
13Operationoperator: 14
operands: 15
14Literal
15ExprTuple16, 17
16Variable
17Operationoperator: 18
operand: 20
18Literal
19ExprTuple20
20Lambdaparameter: 27
body: 22
21ExprTuple27
22Conditionalvalue: 23
condition: 24
23Variable
24Operationoperator: 25
operands: 26
25Literal
26ExprTuple27, 28
27Variable
28Operationoperator: 29
operands: 30
29Literal
30ExprTuple31, 32
31Literal
32Literal