| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , ⊢ |
| : , : , : |
1 | reference | 5 | ⊢ |
2 | instantiation | 12, 4 | , ⊢ |
| : , : , : |
3 | instantiation | 5, 6, 7, 8* | , , ⊢ |
| : , : , : |
4 | instantiation | 9, 10 | , ⊢ |
| : , : |
5 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
6 | instantiation | 20, 56, 22, 21, 23, 59, 47, 11 | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
7 | instantiation | 12, 13 | , , ⊢ |
| : , : , : |
8 | instantiation | 14, 15, 16, 50, 17* | , , ⊢ |
| : , : , : , : , : |
9 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
10 | modus ponens | 18, 48 | , ⊢ |
11 | instantiation | 19, 59, 56, 48 | , ⊢ |
| : , : , : , : |
12 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
13 | instantiation | 20, 56, 21, 22, 23, 59, 47, 48 | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
14 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
15 | instantiation | 24, 31 | ⊢ |
| : |
16 | instantiation | 33, 25, 26 | , ⊢ |
| : , : , : |
17 | instantiation | 27, 50, 28* | ⊢ |
| : , : |
18 | instantiation | 29, 58, 59, 56 | ⊢ |
| : , : , : , : , : , : , : |
19 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
20 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
21 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
22 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
23 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
24 | theorem | | ⊢ |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
25 | instantiation | 30, 31, 32 | ⊢ |
| : , : , : |
26 | instantiation | 33, 34, 35 | , ⊢ |
| : , : , : |
27 | axiom | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
28 | instantiation | 36, 50, 58, 37*, 38* | ⊢ |
| : , : , : |
29 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum |
30 | theorem | | ⊢ |
| proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
31 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
32 | instantiation | 39, 55 | ⊢ |
| : , : |
33 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
34 | instantiation | 40, 44, 41, 62, 42* | ⊢ |
| : , : , : |
35 | instantiation | 43, 44, 45, 59, 46, 47, 48 | , ⊢ |
| : , : , : , : |
36 | theorem | | ⊢ |
| proveit.numbers.exponentiation.product_of_posnat_powers |
37 | instantiation | 49, 50 | ⊢ |
| : |
38 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_1_1 |
39 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
40 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_cart_exps_within_cart_exp |
41 | instantiation | 51 | ⊢ |
| : , : |
42 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.mult_3_3 |
43 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
44 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
45 | instantiation | 51 | ⊢ |
| : , : |
46 | instantiation | 51 | ⊢ |
| : , : |
47 | assumption | | ⊢ |
48 | modus ponens | 52, 53 | ⊢ |
49 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
50 | instantiation | 54, 55, 56 | ⊢ |
| : , : , : |
51 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
52 | instantiation | 57, 58, 59 | ⊢ |
| : , : , : , : , : , : |
53 | generalization | 60 | ⊢ |
54 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
55 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
56 | assumption | | ⊢ |
57 | theorem | | ⊢ |
| proveit.linear_algebra.addition.summation_closure |
58 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
59 | instantiation | 61, 62 | ⊢ |
| : |
60 | assumption | | ⊢ |
61 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
62 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
*equality replacement requirements |