| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4* | , , ⊢ |
| : , : , : |
1 | reference | 55 | ⊢ |
2 | instantiation | 79, 5, 6*, 7* | , , ⊢ |
| : , : , : |
3 | instantiation | 59, 8 | , , ⊢ |
| : , : |
4 | instantiation | 55, 9, 10 | , , ⊢ |
| : , : , : |
5 | modus ponens | 11, 12 | , , ⊢ |
6 | instantiation | 43, 98 | ⊢ |
| : , : |
7 | instantiation | 43, 98 | ⊢ |
| : , : |
8 | modus ponens | 13, 14 | , , ⊢ |
9 | instantiation | 79, 15 | , ⊢ |
| : , : , : |
10 | instantiation | 69, 90, 71, 72, 73, 83, 74, 45 | , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
11 | instantiation | 61, 76 | ⊢ |
| : , : , : , : , : , : , : |
12 | generalization | 16 | , , ⊢ |
13 | instantiation | 17, 71, 76, 72, 34, 73 | ⊢ |
| : , : , : , : , : , : , : , : , : , : , : |
14 | generalization | 18 | , , ⊢ |
15 | instantiation | 55, 19, 20 | , ⊢ |
| : , : , : |
16 | instantiation | 21, 22, 23, 86, 87 | , , , ⊢ |
| : , : , : , : , : |
17 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation_with_scalar_mult |
18 | instantiation | 50, 24, 25 | , , , ⊢ |
| : , : , : |
19 | instantiation | 79, 26, 27*, 28* | ⊢ |
| : , : , : |
20 | instantiation | 59, 29 | , ⊢ |
| : , : |
21 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
22 | instantiation | 49, 52, 30, 31 | ⊢ |
| : , : , : |
23 | instantiation | 51, 52, 30, 31, 54, 32, 33 | , ⊢ |
| : , : , : , : |
24 | instantiation | 82, 34, 35, 36 | , , , ⊢ |
| : , : , : , : |
25 | instantiation | 37, 38, 39, 40 | , , , ⊢ |
| : , : , : , : |
26 | modus ponens | 41, 42 | ⊢ |
27 | instantiation | 43, 98 | ⊢ |
| : , : |
28 | instantiation | 43, 98 | ⊢ |
| : , : |
29 | modus ponens | 44, 45 | , ⊢ |
30 | instantiation | 67 | ⊢ |
| : , : |
31 | instantiation | 46, 89 | ⊢ |
| : |
32 | instantiation | 47, 48, 74 | ⊢ |
| : , : , : |
33 | instantiation | 47, 48, 84 | ⊢ |
| : , : , : |
34 | instantiation | 49, 52, 53, 83 | ⊢ |
| : , : , : |
35 | instantiation | 50, 70, 80 | , ⊢ |
| : , : , : |
36 | instantiation | 51, 52, 53, 83, 54, 74, 84 | , ⊢ |
| : , : , : , : |
37 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
38 | instantiation | 55, 56, 57 | , , , ⊢ |
| : , : , : |
39 | instantiation | 58 | ⊢ |
| : |
40 | instantiation | 59, 60 | , ⊢ |
| : , : |
41 | instantiation | 61, 76 | ⊢ |
| : , : , : , : , : , : , : |
42 | generalization | 68 | ⊢ |
43 | theorem | | ⊢ |
| proveit.core_expr_types.conditionals.satisfied_condition_reduction |
44 | instantiation | 62, 76, 83, 90 | ⊢ |
| : , : , : , : , : , : , : , : |
45 | modus ponens | 63, 64 | ⊢ |
46 | theorem | | ⊢ |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
47 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
48 | instantiation | 65, 89, 66 | ⊢ |
| : , : , : |
49 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
50 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
51 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
52 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
53 | instantiation | 67 | ⊢ |
| : , : |
54 | instantiation | 67 | ⊢ |
| : , : |
55 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
56 | instantiation | 79, 68 | , ⊢ |
| : , : , : |
57 | instantiation | 69, 70, 71, 72, 73, 83, 74, 84 | , , , ⊢ |
| : , : , : , : , : , : , : , : , : , : |
58 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
59 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
60 | instantiation | 79, 80 | , ⊢ |
| : , : , : |
61 | theorem | | ⊢ |
| proveit.core_expr_types.lambda_maps.general_lambda_substitution |
62 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum_with_scalar_mult |
63 | instantiation | 75, 76, 83 | ⊢ |
| : , : , : , : , : , : |
64 | generalization | 77 | ⊢ |
65 | theorem | | ⊢ |
| proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
66 | instantiation | 78, 91 | ⊢ |
| : , : |
67 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
68 | instantiation | 79, 80 | , ⊢ |
| : , : , : |
69 | theorem | | ⊢ |
| proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
70 | instantiation | 81, 90, 92 | , ⊢ |
| : , : |
71 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
72 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
73 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
74 | assumption | | ⊢ |
75 | theorem | | ⊢ |
| proveit.linear_algebra.addition.summation_closure |
76 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
77 | instantiation | 82, 83, 92, 84 | , ⊢ |
| : , : , : , : |
78 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
79 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
80 | instantiation | 85, 86, 87 | , ⊢ |
| : , : |
81 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_real_closure_bin |
82 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
83 | instantiation | 88, 89 | ⊢ |
| : |
84 | assumption | | ⊢ |
85 | axiom | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
86 | instantiation | 103, 91, 90 | ⊢ |
| : , : , : |
87 | instantiation | 103, 91, 92 | ⊢ |
| : , : , : |
88 | theorem | | ⊢ |
| proveit.linear_algebra.real_vec_set_is_vec_space |
89 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
90 | assumption | | ⊢ |
91 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
92 | instantiation | 103, 93, 94 | ⊢ |
| : , : , : |
93 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
94 | instantiation | 103, 95, 96 | ⊢ |
| : , : , : |
95 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
96 | instantiation | 103, 97, 98 | ⊢ |
| : , : , : |
97 | instantiation | 99, 100, 101 | ⊢ |
| : , : |
98 | assumption | | ⊢ |
99 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
100 | instantiation | 103, 104, 102 | ⊢ |
| : , : , : |
101 | instantiation | 103, 104, 105 | ⊢ |
| : , : , : |
102 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
103 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
104 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
105 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
*equality replacement requirements |