| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4* | , , ⊢  |
| | : , : , :  |
| 1 | reference | 55 | ⊢  |
| 2 | instantiation | 79, 5, 6*, 7* | , , ⊢  |
| | : , : , :  |
| 3 | instantiation | 59, 8 | , , ⊢  |
| | : , :  |
| 4 | instantiation | 55, 9, 10 | , , ⊢  |
| | : , : , :  |
| 5 | modus ponens | 11, 12 | , , ⊢  |
| 6 | instantiation | 43, 98 | ⊢  |
| | : , :  |
| 7 | instantiation | 43, 98 | ⊢  |
| | : , :  |
| 8 | modus ponens | 13, 14 | , , ⊢  |
| 9 | instantiation | 79, 15 | , ⊢  |
| | : , : , :  |
| 10 | instantiation | 69, 90, 71, 72, 73, 83, 74, 45 | , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 11 | instantiation | 61, 76 | ⊢  |
| | : , : , : , : , : , : , :  |
| 12 | generalization | 16 | , , ⊢  |
| 13 | instantiation | 17, 71, 76, 72, 34, 73 | ⊢  |
| | : , : , : , : , : , : , : , : , : , : , :  |
| 14 | generalization | 18 | , , ⊢  |
| 15 | instantiation | 55, 19, 20 | , ⊢  |
| | : , : , :  |
| 16 | instantiation | 21, 22, 23, 86, 87 | , , , ⊢  |
| | : , : , : , : , :  |
| 17 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_distribution_over_summation_with_scalar_mult |
| 18 | instantiation | 50, 24, 25 | , , , ⊢  |
| | : , : , :  |
| 19 | instantiation | 79, 26, 27*, 28* | ⊢  |
| | : , : , :  |
| 20 | instantiation | 59, 29 | , ⊢  |
| | : , :  |
| 21 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled |
| 22 | instantiation | 49, 52, 30, 31 | ⊢  |
| | : , : , :  |
| 23 | instantiation | 51, 52, 30, 31, 54, 32, 33 | , ⊢  |
| | : , : , : , :  |
| 24 | instantiation | 82, 34, 35, 36 | , , , ⊢  |
| | : , : , : , :  |
| 25 | instantiation | 37, 38, 39, 40 | , , , ⊢  |
| | : , : , : , :  |
| 26 | modus ponens | 41, 42 | ⊢  |
| 27 | instantiation | 43, 98 | ⊢  |
| | : , :  |
| 28 | instantiation | 43, 98 | ⊢  |
| | : , :  |
| 29 | modus ponens | 44, 45 | , ⊢  |
| 30 | instantiation | 67 | ⊢  |
| | : , :  |
| 31 | instantiation | 46, 89 | ⊢  |
| | :  |
| 32 | instantiation | 47, 48, 74 | ⊢  |
| | : , : , :  |
| 33 | instantiation | 47, 48, 84 | ⊢  |
| | : , : , :  |
| 34 | instantiation | 49, 52, 53, 83 | ⊢  |
| | : , : , :  |
| 35 | instantiation | 50, 70, 80 | , ⊢  |
| | : , : , :  |
| 36 | instantiation | 51, 52, 53, 83, 54, 74, 84 | , ⊢  |
| | : , : , : , :  |
| 37 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 38 | instantiation | 55, 56, 57 | , , , ⊢  |
| | : , : , :  |
| 39 | instantiation | 58 | ⊢  |
| | :  |
| 40 | instantiation | 59, 60 | , ⊢  |
| | : , :  |
| 41 | instantiation | 61, 76 | ⊢  |
| | : , : , : , : , : , : , :  |
| 42 | generalization | 68 | ⊢  |
| 43 | theorem | | ⊢  |
| | proveit.core_expr_types.conditionals.satisfied_condition_reduction |
| 44 | instantiation | 62, 76, 83, 90 | ⊢  |
| | : , : , : , : , : , : , : , :  |
| 45 | modus ponens | 63, 64 | ⊢  |
| 46 | theorem | | ⊢  |
| | proveit.linear_algebra.complex_vec_set_is_vec_space |
| 47 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.unfold_subset_eq |
| 48 | instantiation | 65, 89, 66 | ⊢  |
| | : , : , :  |
| 49 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space |
| 50 | theorem | | ⊢  |
| | proveit.logic.equality.sub_left_side_into |
| 51 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space |
| 52 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 53 | instantiation | 67 | ⊢  |
| | : , :  |
| 54 | instantiation | 67 | ⊢  |
| | : , :  |
| 55 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 56 | instantiation | 79, 68 | , ⊢  |
| | : , : , :  |
| 57 | instantiation | 69, 70, 71, 72, 73, 83, 74, 84 | , , , ⊢  |
| | : , : , : , : , : , : , : , : , : , :  |
| 58 | axiom | | ⊢  |
| | proveit.logic.equality.equals_reflexivity |
| 59 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 60 | instantiation | 79, 80 | , ⊢  |
| | : , : , :  |
| 61 | theorem | | ⊢  |
| | proveit.core_expr_types.lambda_maps.general_lambda_substitution |
| 62 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.distribution_over_vec_sum_with_scalar_mult |
| 63 | instantiation | 75, 76, 83 | ⊢  |
| | : , : , : , : , : , :  |
| 64 | generalization | 77 | ⊢  |
| 65 | theorem | | ⊢  |
| | proveit.logic.sets.cartesian_products.cart_exp_subset_eq |
| 66 | instantiation | 78, 91 | ⊢  |
| | : , :  |
| 67 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 68 | instantiation | 79, 80 | , ⊢  |
| | : , : , :  |
| 69 | theorem | | ⊢  |
| | proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod |
| 70 | instantiation | 81, 90, 92 | , ⊢  |
| | : , :  |
| 71 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 72 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 73 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 74 | assumption | | ⊢  |
| 75 | theorem | | ⊢  |
| | proveit.linear_algebra.addition.summation_closure |
| 76 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 77 | instantiation | 82, 83, 92, 84 | , ⊢  |
| | : , : , : , :  |
| 78 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.relax_proper_subset |
| 79 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 80 | instantiation | 85, 86, 87 | , ⊢  |
| | : , :  |
| 81 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_real_closure_bin |
| 82 | theorem | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
| 83 | instantiation | 88, 89 | ⊢  |
| | :  |
| 84 | assumption | | ⊢  |
| 85 | axiom | | ⊢  |
| | proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult |
| 86 | instantiation | 103, 91, 90 | ⊢  |
| | : , : , :  |
| 87 | instantiation | 103, 91, 92 | ⊢  |
| | : , : , :  |
| 88 | theorem | | ⊢  |
| | proveit.linear_algebra.real_vec_set_is_vec_space |
| 89 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 90 | assumption | | ⊢  |
| 91 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 92 | instantiation | 103, 93, 94 | ⊢  |
| | : , : , :  |
| 93 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 94 | instantiation | 103, 95, 96 | ⊢  |
| | : , : , :  |
| 95 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 96 | instantiation | 103, 97, 98 | ⊢  |
| | : , : , :  |
| 97 | instantiation | 99, 100, 101 | ⊢  |
| | : , :  |
| 98 | assumption | | ⊢  |
| 99 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.int_interval_within_int |
| 100 | instantiation | 103, 104, 102 | ⊢  |
| | : , : , :  |
| 101 | instantiation | 103, 104, 105 | ⊢  |
| | : , : , :  |
| 102 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 103 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 104 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 105 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| *equality replacement requirements |