logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0generalization1, ,  ⊢  
1instantiation13, 2, 3, , ,  ⊢  
  : , : , :
2instantiation4, 5, 6, 7, , ,  ⊢  
  : , : , : , :
3instantiation8, 9, 10, 11, , ,  ⊢  
  : , : , : , :
4theorem  ⊢  
 proveit.linear_algebra.scalar_multiplication.scalar_mult_closure
5instantiation12, 15, 16, 31  ⊢  
  : , : , :
6instantiation13, 27, 35,  ⊢  
  : , : , :
7instantiation14, 15, 16, 31, 17, 32, 33,  ⊢  
  : , : , : , :
8theorem  ⊢  
 proveit.logic.equality.four_chain_transitivity
9instantiation18, 19, 20, , ,  ⊢  
  : , : , :
10instantiation21  ⊢  
  :
11instantiation22, 23,  ⊢  
  : , :
12theorem  ⊢  
 proveit.linear_algebra.tensors.tensor_prod_of_vec_spaces_is_vec_space
13theorem  ⊢  
 proveit.logic.equality.sub_left_side_into
14theorem  ⊢  
 proveit.linear_algebra.tensors.tensor_prod_is_in_tensor_prod_space
15theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
16instantiation24  ⊢  
  : , :
17instantiation24  ⊢  
  : , :
18axiom  ⊢  
 proveit.logic.equality.equals_transitivity
19instantiation34, 25,  ⊢  
  : , : , :
20instantiation26, 27, 28, 29, 30, 31, 32, 33, , ,  ⊢  
  : , : , : , : , : , : , : , : , : , :
21axiom  ⊢  
 proveit.logic.equality.equals_reflexivity
22theorem  ⊢  
 proveit.logic.equality.equals_reversal
23instantiation34, 35,  ⊢  
  : , : , :
24theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
25instantiation34, 35,  ⊢  
  : , : , :
26theorem  ⊢  
 proveit.linear_algebra.tensors.factor_scalar_from_tensor_prod
27instantiation36, 42, 44,  ⊢  
  : , :
28theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
29axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
30theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
31instantiation37, 38  ⊢  
  :
32assumption  ⊢  
33assumption  ⊢  
34axiom  ⊢  
 proveit.logic.equality.substitution
35instantiation39, 40, 41,  ⊢  
  : , :
36theorem  ⊢  
 proveit.numbers.multiplication.mult_real_closure_bin
37theorem  ⊢  
 proveit.linear_algebra.real_vec_set_is_vec_space
38theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat3
39axiom  ⊢  
 proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult
40instantiation55, 43, 42  ⊢  
  : , : , :
41instantiation55, 43, 44  ⊢  
  : , : , :
42assumption  ⊢  
43theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
44instantiation55, 45, 46  ⊢  
  : , : , :
45theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
46instantiation55, 47, 48  ⊢  
  : , : , :
47theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
48instantiation55, 49, 50  ⊢  
  : , : , :
49instantiation51, 52, 53  ⊢  
  : , :
50assumption  ⊢  
51theorem  ⊢  
 proveit.numbers.number_sets.integers.int_interval_within_int
52instantiation55, 56, 54  ⊢  
  : , : , :
53instantiation55, 56, 57  ⊢  
  : , : , :
54theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
55theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
56theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
57theorem  ⊢  
 proveit.numbers.numerals.decimals.nat4