logo

Expression of type Implies

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import gamma, i, y
from proveit.linear_algebra import ScalarMult, VecSum
from proveit.logic import CartExp, Equals, Implies, InSet
from proveit.numbers import Interval, Mult, Real, four, three, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = Interval(two, four)
sub_expr3 = VecSum(index_or_indices = sub_expr1, summand = ScalarMult(i, y), domain = sub_expr2)
expr = Implies(InSet(sub_expr3, CartExp(Real, three)), Equals(ScalarMult(gamma, sub_expr3), VecSum(index_or_indices = sub_expr1, summand = ScalarMult(Mult(gamma, i), y), domain = sub_expr2)).with_wrapping_at(1)).with_wrapping_at(1)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(\left(\sum_{i=2}^{4} \left(i \cdot y\right)\right) \in \mathbb{R}^{3}\right) \\  \Rightarrow \left(\begin{array}{c} \begin{array}{l} \left(\gamma \cdot \left(\sum_{i=2}^{4} \left(i \cdot y\right)\right)\right) \\  = \left(\sum_{i=2}^{4} \left(\left(\gamma \cdot i\right) \cdot y\right)\right) \end{array} \end{array}\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(1)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 32
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple17, 8
6Literal
7ExprTuple9, 10
8Operationoperator: 11
operands: 12
9Operationoperator: 30
operands: 13
10Operationoperator: 19
operand: 18
11Literal
12ExprTuple15, 16
13ExprTuple38, 17
14ExprTuple18
15Literal
16Literal
17Operationoperator: 19
operand: 22
18Lambdaparameter: 39
body: 21
19Literal
20ExprTuple22
21Conditionalvalue: 23
condition: 28
22Lambdaparameter: 39
body: 25
23Operationoperator: 30
operands: 26
24ExprTuple39
25Conditionalvalue: 27
condition: 28
26ExprTuple29, 36
27Operationoperator: 30
operands: 31
28Operationoperator: 32
operands: 33
29Operationoperator: 34
operands: 35
30Literal
31ExprTuple39, 36
32Literal
33ExprTuple39, 37
34Literal
35ExprTuple38, 39
36Variable
37Operationoperator: 40
operands: 41
38Variable
39Variable
40Literal
41ExprTuple42, 43
42Literal
43Literal