logo

Expression of type Conditional

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, gamma, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd
from proveit.logic import InSet
from proveit.numbers import Interval, four, two
In [2]:
# build up the expression from sub-expressions
expr = Conditional(ScalarMult(gamma, ScalarMult(i, TensorProd(x, y))), InSet(i, Interval(two, four)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left\{\gamma \cdot \left(i \cdot \left(x {\otimes} y\right)\right) \textrm{ if } i \in \{2~\ldotp \ldotp~4\}\right..
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
condition_delimiter'comma' or 'and'commacomma('with_comma_delimiter', 'with_conjunction_delimiter')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Conditionalvalue: 1
condition: 2
1Operationoperator: 9
operands: 3
2Operationoperator: 4
operands: 5
3ExprTuple6, 7
4Literal
5ExprTuple13, 8
6Variable
7Operationoperator: 9
operands: 10
8Operationoperator: 11
operands: 12
9Literal
10ExprTuple13, 14
11Literal
12ExprTuple15, 16
13Variable
14Operationoperator: 17
operands: 18
15Literal
16Literal
17Literal
18ExprTuple19, 20
19Variable
20Variable