Capabilities Documentation
plotting docu
- probabilistic.capabilities.plotting.initiate_plot_settings()
function to initiate plotting settings
- probabilistic.capabilities.plotting.plot_deterministic_parameter_value(value, variable_name)
function to plot deterministic value
- Parameters:
value –
variable_name –
- probabilistic.capabilities.plotting.plot_distribution_pdf(distribution, variable_name, plot_limits=False)
function to plot distribution pdf
- Parameters:
distribution –
variable_name –
plot_limits (bool) – Defaults to False
- probabilistic.capabilities.plotting.plot_sample_cdf(samples: array, variable_name: str, percentiles: list = False, **kwargs)
function to plot cdf of samples
- Parameters:
samples (np.array) – data to be plotted
variable_name (str) – name of data to be plotted
percentiles (list) – percentiles to include on plot
kwargs (dict) – additional histogram function inputs
- probabilistic.capabilities.plotting.plot_sample_histogram(samples: array, variable_name: str, percentiles: list = False, **kwargs)
function to plot histogram of samples
- Parameters:
samples (np.array) – data to be plotted
variable_name (str) – name of data to be plotted
percentiles (list) – percentiles to include on plot
kwargs (dict) – additional histogram function inputs
- probabilistic.capabilities.plotting.plot_scatter_matrix(data_dict, density=False)
function to plot scatter matrix of samples from multiple parameters
- Parameters:
data_dict (dict) –
density (bool) – Defaults to False
sampling docu
- class probabilistic.capabilities.sampling.BoundingStudy(number_of_aleatory_samples: int, number_of_epistemic_samples: int, random_state)
Bounding Sensitivity Study Class
- Parameters:
number_of_aleatory_samples (int) –
number_of_epistemic_samples (int) –
random_state –
- add_sensitivity_samples_to_sample_sheet(aleatory_samples, epistemic_samples)
function to add samples from bounding sensitivity study to sample sheet
- determine_total_sample_size()
function to determine the total sample size of the study
- generate_cdf_samples(_)
function to specify percentiles sampled from cdf
- relevant_error_checks()
function to perform error checks on specified study details
- class probabilistic.capabilities.sampling.LHSStudy(number_of_aleatory_samples: int, number_of_epistemic_samples: int, random_state)
LHS Uncertainty Study Class
- Parameters:
number_of_aleatory_samples (int) –
number_of_epistemic_samples (int) –
random_state –
- collect_variables(variable_distribution_dict, number_of_samples)
function to collect variable samples for LHS study
- create_variable_sample_sheet()
function to create sample sheet for LHS study
- relevant_error_checks()
function to perform error checks on specified study details
- class probabilistic.capabilities.sampling.OneAtATimeSensitivityStudy(number_of_aleatory_samples: int, number_of_epistemic_samples: int, random_state)
Single Variable Sampling-Based Sensitivity Study
- Parameters:
number_of_aleatory_samples (int) –
number_of_epistemic_samples (int) –
random_state –
- add_sensitivity_samples_to_sample_sheet(aleatory_samples, epistemic_samples)
function to add sensitivity study samples to sample sheet for sampling based sensitivity study
- collect_variables(variable_distribution_dict, number_of_samples)
function to collect samples for uncertain variables for sampling based sensitivity study
- create_variable_sample_sheet()
function to create sample sheet for sampling based sensitivity study
- determine_total_sample_size()
function to determine the total sample size of the study
- generate_cdf_samples(number_of_samples)
function to specify percentiles sampled from cdf
- relevant_error_checks()
function to perform error checks on specified study details
- class probabilistic.capabilities.sampling.RandomStudy(number_of_aleatory_samples: int, number_of_epistemic_samples: int, random_state)
Random Sampling Uncertainty Study Class
- Parameters:
number_of_aleatory_samples (int) –
number_of_epistemic_samples (int) –
random_state –
- collect_variables(variable_distribution_dict, number_of_samples)
function to collect variable samples for random sampling study
- create_variable_sample_sheet()
function to create sample sheet and add samples for random sampling study
- relevant_error_checks()
function to perform error checks on specified study details
- class probabilistic.capabilities.sampling.SensitivityStudy(number_of_aleatory_samples: int, number_of_epistemic_samples: int, random_state)
Generic Sensitivity Study Class
- Parameters:
number_of_aleatory_samples (int) –
number_of_epistemic_samples (int) –
random_state –
- relevant_error_checks()
function to perform error checks on specified study details
- class probabilistic.capabilities.sampling.UncertaintyStudy(number_of_aleatory_samples: int, number_of_epistemic_samples: int, random_state)
Generic Uncertainty Study Class
- Parameters:
number_of_aleatory_samples (int) –
number_of_epistemic_samples (int) –
random_state –
- add_aleatory_samples_to_sample_sheet(samples)
function to add aleatory variable samples to uncertainty study sample sheet
- add_deterministic_samples_to_sample_sheet(parameter, sample_size)
function to add deterministic samples to sample sheet
- add_deterministic_variables(deterministic_set)
function to add deterministic variables to study
- add_epistemic_samples_to_sample_sheet(samples)
function to add epistemic variable samples to uncertainty study sample sheet
- add_nominal_values_to_sample_sheet(nominal_values)
function for adding nominal values to sample sheet for generic sampling study
- add_probabilistic_variables(distribution_set)
function to add probabilistic variables to study
- static add_variable_name(variable_distribution, location)
function to ensure two variables don’t have the same name
- add_variables(input_parameters)
Function to add all uncertain variables to uncertainty study
- static calc_number_of_variables(variable_dict)
function to calculate the number of variables in a dictionary
- calc_total_number_of_variables()
function to determine total number of uncertain variables in uncertainty study
- static collect_variable_nominal_values(variable_dict)
function to collect nominal values of variables
- create_variable_nominal_sheet()
function to create sample sheet holding variables nominal values
- error_check_for_distributions_and_sample_size()
function to check that both an uncertainty distribution exists and sample size has been specified, not one or the other
- error_check_for_distributions_if_sample_size()
function to check that both an uncertainty distribution exists and sample size has been specified, not one or the other
- error_check_for_variable_unique_variable_names()
function to check that all variables have unique names
- generate_lhs_samples(number_of_variables: int, number_of_samples: int, optimization_method='random-cd')
function to generate Latin hypercube samples (LHS) using Scipy’s Quasi-Monte Carlo submodule
- Parameters:
number_of_variables (int) – how many variables to generate samples for
number_of_samples (int) – how many LHS samples to generate
- Returns:
lhs_samples (np.array(number_of_samples, number_of_variables))
- LHS samples
- get_parameter_names()
function to both deterministic and probabilistic variable names
- get_total_double_loop_sample_size()
function to get sample size for double loop style uncertainty study
- get_uncertain_parameter_names()
function to determine total number of uncertain variables in study
- relevant_error_checks()
function to perform error checks on specified study details
uncertainty_definitions docu
- class probabilistic.capabilities.uncertainty_definitions.BetaDistribution(name: str, uncertainty_type: str, nominal_value: float, a: float, b: float, loc: float | None = None, scale: float | None = None)
Beta Distribution Uncertainty Class
- Parameters:
name (str) –
uncertainty_type (str) –
nominal_value (float) –
a (float) –
b (float) –
loc (float) –
scale (float) –
- class probabilistic.capabilities.uncertainty_definitions.DeterministicCharacterization(name: str, value: float)
Generic Deterministic Parameter Class
- Parameters:
name (str) –
value (float) –
- generate_samples(sample_size)
Function to generate deterministic samples (same values)
- plot_distribution()
Function to create plot of uncertainty distribution
- class probabilistic.capabilities.uncertainty_definitions.LognormalDistribution(name: str, uncertainty_type: str, nominal_value: float, mu: float, sigma: float)
Log-Normal Distribution Uncertainty Class
- Parameters:
name (str) –
uncertainty_type (str) –
nominal_value (float) –
mu (float) –
sigma (float) –
- class probabilistic.capabilities.uncertainty_definitions.NormalDistribution(name: str, uncertainty_type: str, nominal_value: float, mean: float, std_deviation: float)
Normal Distribution Uncertainty Class
- Parameters:
name (str) –
uncertainty_type (str) –
nominal_value (float) –
mean (float) –
std_deviation (float) –
- class probabilistic.capabilities.uncertainty_definitions.TruncatedNormalDistribution(name: str, uncertainty_type: str, nominal_value: float, mean: float, std_deviation: float, lower_bound: float, upper_bound: float)
Truncated Normal Distribution Uncertainty Class
- Parameters:
name (str) –
uncertainty_type (str) –
nominal_value (float) –
mean (float) –
std_deviation (float) –
lower_bound (float) –
upper_bound (float) –
- class probabilistic.capabilities.uncertainty_definitions.UncertaintyCharacterization(name: str, uncertainty_type: str, nominal_value: float, distribution: str, parameters: dict)
Generic Uncertainty Distribution Class
- Parameters:
name (str) –
uncertainty_type (str) –
nominal_value (float) –
distribution (str) –
parameters (dict) –
- generate_samples(sample_size: int, random_state=np.random.default_rng())
Function to sample from uncertainty distributions
- Parameters:
sample_size (int) – number of samples
random_state (generator) – np default_rng instance or will be used to create randomState instance
- plot_distribution(plot_limits=False)
Function to create plot of uncertainty distribution
- class probabilistic.capabilities.uncertainty_definitions.UniformDistribution(name: str, uncertainty_type: str, nominal_value: float, lower_bound: float, upper_bound: float)
Uniform Distribution Uncertainty Class
- Parameters:
name (str) –
uncertainty_type (str) –
nominal_value (float) –
lower_bound (float) –
upper_bound (float) –
- probabilistic.capabilities.uncertainty_definitions.specify_distribution(parameter_specification)
function to generate specified distribution type object :param parameter_specification: dictionary containing specification of desired uncertainty distribution :type parameter_specification: dict
- Returns:
dist – specified distribution type object
- Return type: