| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : |
1 | theorem | | ⊢ |
| proveit.trigonometry.sine_linear_bound_nonpos |
2 | instantiation | 4, 57, 5 | ⊢ |
| : |
3 | instantiation | 6, 7, 65, 57, 8, 9*, 10* | ⊢ |
| : , : , : |
4 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nonpos_real_is_real_nonpos |
5 | instantiation | 13, 11 | ⊢ |
| : , : |
6 | theorem | | ⊢ |
| proveit.numbers.addition.weak_bound_via_left_term_bound |
7 | instantiation | 12, 51, 73 | ⊢ |
| : , : |
8 | instantiation | 13, 14 | ⊢ |
| : , : |
9 | instantiation | 54, 15, 16 | ⊢ |
| : , : , : |
10 | instantiation | 17, 18, 32, 19 | ⊢ |
| : , : , : , : |
11 | instantiation | 20, 65, 66, 67 | ⊢ |
| : , : , : |
12 | theorem | | ⊢ |
| proveit.numbers.addition.add_real_closure_bin |
13 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
14 | instantiation | 21, 65, 66, 67 | ⊢ |
| : , : , : |
15 | instantiation | 54, 22, 23 | ⊢ |
| : , : , : |
16 | instantiation | 54, 24, 25 | ⊢ |
| : , : , : |
17 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
18 | instantiation | 54, 26, 27 | ⊢ |
| : , : , : |
19 | instantiation | 28, 37 | ⊢ |
| : , : |
20 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.interval_oo_upper_bound |
21 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.interval_oo_lower_bound |
22 | instantiation | 59, 29 | ⊢ |
| : , : , : |
23 | instantiation | 59, 33 | ⊢ |
| : , : , : |
24 | instantiation | 38, 39, 106, 40, 41, 42, 30, 43, 46 | ⊢ |
| : , : , : , : , : , : |
25 | instantiation | 31, 46, 43, 32 | ⊢ |
| : , : , : |
26 | instantiation | 59, 33 | ⊢ |
| : , : , : |
27 | instantiation | 54, 34, 35 | ⊢ |
| : , : , : |
28 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
29 | instantiation | 59, 37 | ⊢ |
| : , : , : |
30 | instantiation | 36, 46 | ⊢ |
| : |
31 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_31 |
32 | instantiation | 53 | ⊢ |
| : |
33 | instantiation | 59, 37 | ⊢ |
| : , : , : |
34 | instantiation | 38, 39, 106, 40, 41, 42, 45, 43, 46 | ⊢ |
| : , : , : , : , : , : |
35 | instantiation | 44, 45, 46, 47 | ⊢ |
| : , : , : |
36 | theorem | | ⊢ |
| proveit.numbers.negation.complex_closure |
37 | instantiation | 48, 62, 77, 81, 49* | ⊢ |
| : , : |
38 | theorem | | ⊢ |
| proveit.numbers.addition.disassociation |
39 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
40 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
41 | instantiation | 50 | ⊢ |
| : , : |
42 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
43 | instantiation | 104, 84, 51 | ⊢ |
| : , : , : |
44 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_12 |
45 | instantiation | 104, 84, 57 | ⊢ |
| : , : , : |
46 | instantiation | 104, 84, 52 | ⊢ |
| : , : , : |
47 | instantiation | 53 | ⊢ |
| : |
48 | theorem | | ⊢ |
| proveit.numbers.division.div_as_mult |
49 | instantiation | 54, 55, 56 | ⊢ |
| : , : , : |
50 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
51 | instantiation | 72, 57 | ⊢ |
| : |
52 | instantiation | 58, 71, 80 | ⊢ |
| : , : |
53 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
54 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
55 | instantiation | 59, 60 | ⊢ |
| : , : , : |
56 | instantiation | 61, 62, 63 | ⊢ |
| : , : |
57 | instantiation | 64, 65, 66, 67 | ⊢ |
| : , : , : |
58 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_real_closure_bin |
59 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
60 | instantiation | 68, 69, 101, 70* | ⊢ |
| : , : |
61 | theorem | | ⊢ |
| proveit.numbers.multiplication.commutation |
62 | instantiation | 104, 84, 80 | ⊢ |
| : , : , : |
63 | instantiation | 104, 84, 71 | ⊢ |
| : , : , : |
64 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.all_in_interval_oo__is__real |
65 | instantiation | 72, 73 | ⊢ |
| : |
66 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
67 | assumption | | ⊢ |
68 | theorem | | ⊢ |
| proveit.numbers.exponentiation.neg_power_as_div |
69 | instantiation | 104, 74, 75 | ⊢ |
| : , : , : |
70 | instantiation | 76, 77 | ⊢ |
| : |
71 | instantiation | 104, 93, 78 | ⊢ |
| : , : , : |
72 | theorem | | ⊢ |
| proveit.numbers.negation.real_closure |
73 | instantiation | 79, 80, 85, 81 | ⊢ |
| : , : |
74 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
75 | instantiation | 104, 82, 83 | ⊢ |
| : , : , : |
76 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
77 | instantiation | 104, 84, 85 | ⊢ |
| : , : , : |
78 | instantiation | 104, 86, 87 | ⊢ |
| : , : , : |
79 | theorem | | ⊢ |
| proveit.numbers.division.div_real_closure |
80 | instantiation | 104, 88, 89 | ⊢ |
| : , : , : |
81 | instantiation | 90, 103 | ⊢ |
| : |
82 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
83 | instantiation | 104, 91, 92 | ⊢ |
| : , : , : |
84 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
85 | instantiation | 104, 93, 94 | ⊢ |
| : , : , : |
86 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
87 | instantiation | 95, 96, 97 | ⊢ |
| : , : |
88 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
89 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
90 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
91 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
92 | instantiation | 104, 98, 103 | ⊢ |
| : , : , : |
93 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
94 | instantiation | 104, 99, 100 | ⊢ |
| : , : , : |
95 | theorem | | ⊢ |
| proveit.numbers.division.div_rational_pos_closure |
96 | instantiation | 104, 102, 101 | ⊢ |
| : , : , : |
97 | instantiation | 104, 102, 103 | ⊢ |
| : , : , : |
98 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
99 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
100 | instantiation | 104, 105, 106 | ⊢ |
| : , : , : |
101 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
102 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
103 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
104 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
105 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
106 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |