logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  :
1theorem  ⊢  
 proveit.trigonometry.sine_linear_bound_nonpos
2instantiation4, 57, 5  ⊢  
  :
3instantiation6, 7, 65, 57, 8, 9*, 10*  ⊢  
  : , : , :
4theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.nonpos_real_is_real_nonpos
5instantiation13, 11  ⊢  
  : , :
6theorem  ⊢  
 proveit.numbers.addition.weak_bound_via_left_term_bound
7instantiation12, 51, 73  ⊢  
  : , :
8instantiation13, 14  ⊢  
  : , :
9instantiation54, 15, 16  ⊢  
  : , : , :
10instantiation17, 18, 32, 19  ⊢  
  : , : , : , :
11instantiation20, 65, 66, 67  ⊢  
  : , : , :
12theorem  ⊢  
 proveit.numbers.addition.add_real_closure_bin
13theorem  ⊢  
 proveit.numbers.ordering.relax_less
14instantiation21, 65, 66, 67  ⊢  
  : , : , :
15instantiation54, 22, 23  ⊢  
  : , : , :
16instantiation54, 24, 25  ⊢  
  : , : , :
17theorem  ⊢  
 proveit.logic.equality.four_chain_transitivity
18instantiation54, 26, 27  ⊢  
  : , : , :
19instantiation28, 37  ⊢  
  : , :
20theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.interval_oo_upper_bound
21theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.interval_oo_lower_bound
22instantiation59, 29  ⊢  
  : , : , :
23instantiation59, 33  ⊢  
  : , : , :
24instantiation38, 39, 106, 40, 41, 42, 30, 43, 46  ⊢  
  : , : , : , : , : , :
25instantiation31, 46, 43, 32  ⊢  
  : , : , :
26instantiation59, 33  ⊢  
  : , : , :
27instantiation54, 34, 35  ⊢  
  : , : , :
28theorem  ⊢  
 proveit.logic.equality.equals_reversal
29instantiation59, 37  ⊢  
  : , : , :
30instantiation36, 46  ⊢  
  :
31theorem  ⊢  
 proveit.numbers.addition.subtraction.add_cancel_triple_31
32instantiation53  ⊢  
  :
33instantiation59, 37  ⊢  
  : , : , :
34instantiation38, 39, 106, 40, 41, 42, 45, 43, 46  ⊢  
  : , : , : , : , : , :
35instantiation44, 45, 46, 47  ⊢  
  : , : , :
36theorem  ⊢  
 proveit.numbers.negation.complex_closure
37instantiation48, 62, 77, 81, 49*  ⊢  
  : , :
38theorem  ⊢  
 proveit.numbers.addition.disassociation
39theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
40axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
41instantiation50  ⊢  
  : , :
42theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
43instantiation104, 84, 51  ⊢  
  : , : , :
44theorem  ⊢  
 proveit.numbers.addition.subtraction.add_cancel_triple_12
45instantiation104, 84, 57  ⊢  
  : , : , :
46instantiation104, 84, 52  ⊢  
  : , : , :
47instantiation53  ⊢  
  :
48theorem  ⊢  
 proveit.numbers.division.div_as_mult
49instantiation54, 55, 56  ⊢  
  : , : , :
50theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
51instantiation72, 57  ⊢  
  :
52instantiation58, 71, 80  ⊢  
  : , :
53axiom  ⊢  
 proveit.logic.equality.equals_reflexivity
54axiom  ⊢  
 proveit.logic.equality.equals_transitivity
55instantiation59, 60  ⊢  
  : , : , :
56instantiation61, 62, 63  ⊢  
  : , :
57instantiation64, 65, 66, 67  ⊢  
  : , : , :
58theorem  ⊢  
 proveit.numbers.multiplication.mult_real_closure_bin
59axiom  ⊢  
 proveit.logic.equality.substitution
60instantiation68, 69, 101, 70*  ⊢  
  : , :
61theorem  ⊢  
 proveit.numbers.multiplication.commutation
62instantiation104, 84, 80  ⊢  
  : , : , :
63instantiation104, 84, 71  ⊢  
  : , : , :
64theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.all_in_interval_oo__is__real
65instantiation72, 73  ⊢  
  :
66theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
67assumption  ⊢  
68theorem  ⊢  
 proveit.numbers.exponentiation.neg_power_as_div
69instantiation104, 74, 75  ⊢  
  : , : , :
70instantiation76, 77  ⊢  
  :
71instantiation104, 93, 78  ⊢  
  : , : , :
72theorem  ⊢  
 proveit.numbers.negation.real_closure
73instantiation79, 80, 85, 81  ⊢  
  : , :
74theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero
75instantiation104, 82, 83  ⊢  
  : , : , :
76theorem  ⊢  
 proveit.numbers.exponentiation.complex_x_to_first_power_is_x
77instantiation104, 84, 85  ⊢  
  : , : , :
78instantiation104, 86, 87  ⊢  
  : , : , :
79theorem  ⊢  
 proveit.numbers.division.div_real_closure
80instantiation104, 88, 89  ⊢  
  : , : , :
81instantiation90, 103  ⊢  
  :
82theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero
83instantiation104, 91, 92  ⊢  
  : , : , :
84theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
85instantiation104, 93, 94  ⊢  
  : , : , :
86theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational
87instantiation95, 96, 97  ⊢  
  : , :
88theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.real_pos_within_real
89theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.pi_is_real_pos
90theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos
91theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero
92instantiation104, 98, 103  ⊢  
  : , : , :
93theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
94instantiation104, 99, 100  ⊢  
  : , : , :
95theorem  ⊢  
 proveit.numbers.division.div_rational_pos_closure
96instantiation104, 102, 101  ⊢  
  : , : , :
97instantiation104, 102, 103  ⊢  
  : , : , :
98theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int
99theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
100instantiation104, 105, 106  ⊢  
  : , : , :
101theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
102theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos
103theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
104theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
105theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
106theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
*equality replacement requirements