logo

Expression of type Add

from the theory of proveit.trigonometry

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import theta
from proveit.numbers import Add, Mult, Neg, frac, one, pi, two
In [2]:
# build up the expression from sub-expressions
expr = Add(theta, Add(Neg(theta), Mult(frac(one, two), pi)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\theta + \left(-\theta + \left(\frac{1}{2} \cdot \pi\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 3
operands: 1
1ExprTuple11, 2
2Operationoperator: 3
operands: 4
3Literal
4ExprTuple5, 6
5Operationoperator: 7
operand: 11
6Operationoperator: 9
operands: 10
7Literal
8ExprTuple11
9Literal
10ExprTuple12, 13
11Variable
12Operationoperator: 14
operands: 15
13Literal
14Literal
15ExprTuple16, 17
16Literal
17Literal