| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6*, 7* | ⊢ |
| : , : , : |
1 | theorem | | ⊢ |
| proveit.numbers.addition.weak_bound_via_left_term_bound |
2 | instantiation | 8, 46, 68 | ⊢ |
| : , : |
3 | reference | 60 | ⊢ |
4 | reference | 52 | ⊢ |
5 | instantiation | 9, 10 | ⊢ |
| : , : |
6 | instantiation | 49, 11, 12 | ⊢ |
| : , : , : |
7 | instantiation | 13, 14, 27, 15 | ⊢ |
| : , : , : , : |
8 | theorem | | ⊢ |
| proveit.numbers.addition.add_real_closure_bin |
9 | theorem | | ⊢ |
| proveit.numbers.ordering.relax_less |
10 | instantiation | 16, 60, 61, 62 | ⊢ |
| : , : , : |
11 | instantiation | 49, 17, 18 | ⊢ |
| : , : , : |
12 | instantiation | 49, 19, 20 | ⊢ |
| : , : , : |
13 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
14 | instantiation | 49, 21, 22 | ⊢ |
| : , : , : |
15 | instantiation | 23, 32 | ⊢ |
| : , : |
16 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.interval_oo_lower_bound |
17 | instantiation | 54, 24 | ⊢ |
| : , : , : |
18 | instantiation | 54, 28 | ⊢ |
| : , : , : |
19 | instantiation | 33, 34, 101, 35, 36, 37, 25, 38, 41 | ⊢ |
| : , : , : , : , : , : |
20 | instantiation | 26, 41, 38, 27 | ⊢ |
| : , : , : |
21 | instantiation | 54, 28 | ⊢ |
| : , : , : |
22 | instantiation | 49, 29, 30 | ⊢ |
| : , : , : |
23 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
24 | instantiation | 54, 32 | ⊢ |
| : , : , : |
25 | instantiation | 31, 41 | ⊢ |
| : |
26 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_31 |
27 | instantiation | 48 | ⊢ |
| : |
28 | instantiation | 54, 32 | ⊢ |
| : , : , : |
29 | instantiation | 33, 34, 101, 35, 36, 37, 40, 38, 41 | ⊢ |
| : , : , : , : , : , : |
30 | instantiation | 39, 40, 41, 42 | ⊢ |
| : , : , : |
31 | theorem | | ⊢ |
| proveit.numbers.negation.complex_closure |
32 | instantiation | 43, 57, 72, 76, 44* | ⊢ |
| : , : |
33 | theorem | | ⊢ |
| proveit.numbers.addition.disassociation |
34 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
35 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
36 | instantiation | 45 | ⊢ |
| : , : |
37 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
38 | instantiation | 99, 79, 46 | ⊢ |
| : , : , : |
39 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_12 |
40 | instantiation | 99, 79, 52 | ⊢ |
| : , : , : |
41 | instantiation | 99, 79, 47 | ⊢ |
| : , : , : |
42 | instantiation | 48 | ⊢ |
| : |
43 | theorem | | ⊢ |
| proveit.numbers.division.div_as_mult |
44 | instantiation | 49, 50, 51 | ⊢ |
| : , : , : |
45 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
46 | instantiation | 67, 52 | ⊢ |
| : |
47 | instantiation | 53, 66, 75 | ⊢ |
| : , : |
48 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
49 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
50 | instantiation | 54, 55 | ⊢ |
| : , : , : |
51 | instantiation | 56, 57, 58 | ⊢ |
| : , : |
52 | instantiation | 59, 60, 61, 62 | ⊢ |
| : , : , : |
53 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_real_closure_bin |
54 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
55 | instantiation | 63, 64, 96, 65* | ⊢ |
| : , : |
56 | theorem | | ⊢ |
| proveit.numbers.multiplication.commutation |
57 | instantiation | 99, 79, 75 | ⊢ |
| : , : , : |
58 | instantiation | 99, 79, 66 | ⊢ |
| : , : , : |
59 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.all_in_interval_oo__is__real |
60 | instantiation | 67, 68 | ⊢ |
| : |
61 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
62 | assumption | | ⊢ |
63 | theorem | | ⊢ |
| proveit.numbers.exponentiation.neg_power_as_div |
64 | instantiation | 99, 69, 70 | ⊢ |
| : , : , : |
65 | instantiation | 71, 72 | ⊢ |
| : |
66 | instantiation | 99, 88, 73 | ⊢ |
| : , : , : |
67 | theorem | | ⊢ |
| proveit.numbers.negation.real_closure |
68 | instantiation | 74, 75, 80, 76 | ⊢ |
| : , : |
69 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
70 | instantiation | 99, 77, 78 | ⊢ |
| : , : , : |
71 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
72 | instantiation | 99, 79, 80 | ⊢ |
| : , : , : |
73 | instantiation | 99, 81, 82 | ⊢ |
| : , : , : |
74 | theorem | | ⊢ |
| proveit.numbers.division.div_real_closure |
75 | instantiation | 99, 83, 84 | ⊢ |
| : , : , : |
76 | instantiation | 85, 98 | ⊢ |
| : |
77 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
78 | instantiation | 99, 86, 87 | ⊢ |
| : , : , : |
79 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
80 | instantiation | 99, 88, 89 | ⊢ |
| : , : , : |
81 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
82 | instantiation | 90, 91, 92 | ⊢ |
| : , : |
83 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
84 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
85 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
86 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
87 | instantiation | 99, 93, 98 | ⊢ |
| : , : , : |
88 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
89 | instantiation | 99, 94, 95 | ⊢ |
| : , : , : |
90 | theorem | | ⊢ |
| proveit.numbers.division.div_rational_pos_closure |
91 | instantiation | 99, 97, 96 | ⊢ |
| : , : , : |
92 | instantiation | 99, 97, 98 | ⊢ |
| : , : , : |
93 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
94 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
95 | instantiation | 99, 100, 101 | ⊢ |
| : , : , : |
96 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
97 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
99 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
100 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
101 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |