logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4, 5, 6*, 7*  ⊢  
  : , : , :
1theorem  ⊢  
 proveit.numbers.addition.weak_bound_via_left_term_bound
2instantiation8, 46, 68  ⊢  
  : , :
3reference60  ⊢  
4reference52  ⊢  
5instantiation9, 10  ⊢  
  : , :
6instantiation49, 11, 12  ⊢  
  : , : , :
7instantiation13, 14, 27, 15  ⊢  
  : , : , : , :
8theorem  ⊢  
 proveit.numbers.addition.add_real_closure_bin
9theorem  ⊢  
 proveit.numbers.ordering.relax_less
10instantiation16, 60, 61, 62  ⊢  
  : , : , :
11instantiation49, 17, 18  ⊢  
  : , : , :
12instantiation49, 19, 20  ⊢  
  : , : , :
13theorem  ⊢  
 proveit.logic.equality.four_chain_transitivity
14instantiation49, 21, 22  ⊢  
  : , : , :
15instantiation23, 32  ⊢  
  : , :
16theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.interval_oo_lower_bound
17instantiation54, 24  ⊢  
  : , : , :
18instantiation54, 28  ⊢  
  : , : , :
19instantiation33, 34, 101, 35, 36, 37, 25, 38, 41  ⊢  
  : , : , : , : , : , :
20instantiation26, 41, 38, 27  ⊢  
  : , : , :
21instantiation54, 28  ⊢  
  : , : , :
22instantiation49, 29, 30  ⊢  
  : , : , :
23theorem  ⊢  
 proveit.logic.equality.equals_reversal
24instantiation54, 32  ⊢  
  : , : , :
25instantiation31, 41  ⊢  
  :
26theorem  ⊢  
 proveit.numbers.addition.subtraction.add_cancel_triple_31
27instantiation48  ⊢  
  :
28instantiation54, 32  ⊢  
  : , : , :
29instantiation33, 34, 101, 35, 36, 37, 40, 38, 41  ⊢  
  : , : , : , : , : , :
30instantiation39, 40, 41, 42  ⊢  
  : , : , :
31theorem  ⊢  
 proveit.numbers.negation.complex_closure
32instantiation43, 57, 72, 76, 44*  ⊢  
  : , :
33theorem  ⊢  
 proveit.numbers.addition.disassociation
34theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
35axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
36instantiation45  ⊢  
  : , :
37theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
38instantiation99, 79, 46  ⊢  
  : , : , :
39theorem  ⊢  
 proveit.numbers.addition.subtraction.add_cancel_triple_12
40instantiation99, 79, 52  ⊢  
  : , : , :
41instantiation99, 79, 47  ⊢  
  : , : , :
42instantiation48  ⊢  
  :
43theorem  ⊢  
 proveit.numbers.division.div_as_mult
44instantiation49, 50, 51  ⊢  
  : , : , :
45theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
46instantiation67, 52  ⊢  
  :
47instantiation53, 66, 75  ⊢  
  : , :
48axiom  ⊢  
 proveit.logic.equality.equals_reflexivity
49axiom  ⊢  
 proveit.logic.equality.equals_transitivity
50instantiation54, 55  ⊢  
  : , : , :
51instantiation56, 57, 58  ⊢  
  : , :
52instantiation59, 60, 61, 62  ⊢  
  : , : , :
53theorem  ⊢  
 proveit.numbers.multiplication.mult_real_closure_bin
54axiom  ⊢  
 proveit.logic.equality.substitution
55instantiation63, 64, 96, 65*  ⊢  
  : , :
56theorem  ⊢  
 proveit.numbers.multiplication.commutation
57instantiation99, 79, 75  ⊢  
  : , : , :
58instantiation99, 79, 66  ⊢  
  : , : , :
59theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.all_in_interval_oo__is__real
60instantiation67, 68  ⊢  
  :
61theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
62assumption  ⊢  
63theorem  ⊢  
 proveit.numbers.exponentiation.neg_power_as_div
64instantiation99, 69, 70  ⊢  
  : , : , :
65instantiation71, 72  ⊢  
  :
66instantiation99, 88, 73  ⊢  
  : , : , :
67theorem  ⊢  
 proveit.numbers.negation.real_closure
68instantiation74, 75, 80, 76  ⊢  
  : , :
69theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero
70instantiation99, 77, 78  ⊢  
  : , : , :
71theorem  ⊢  
 proveit.numbers.exponentiation.complex_x_to_first_power_is_x
72instantiation99, 79, 80  ⊢  
  : , : , :
73instantiation99, 81, 82  ⊢  
  : , : , :
74theorem  ⊢  
 proveit.numbers.division.div_real_closure
75instantiation99, 83, 84  ⊢  
  : , : , :
76instantiation85, 98  ⊢  
  :
77theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero
78instantiation99, 86, 87  ⊢  
  : , : , :
79theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
80instantiation99, 88, 89  ⊢  
  : , : , :
81theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational
82instantiation90, 91, 92  ⊢  
  : , :
83theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.real_pos_within_real
84theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.pi_is_real_pos
85theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos
86theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero
87instantiation99, 93, 98  ⊢  
  : , : , :
88theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
89instantiation99, 94, 95  ⊢  
  : , : , :
90theorem  ⊢  
 proveit.numbers.division.div_rational_pos_closure
91instantiation99, 97, 96  ⊢  
  : , : , :
92instantiation99, 97, 98  ⊢  
  : , : , :
93theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int
94theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
95instantiation99, 100, 101  ⊢  
  : , : , :
96theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
97theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos
98theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
99theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
100theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
101theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
*equality replacement requirements