logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  : , : , :
1axiom  ⊢  
 proveit.logic.equality.equals_transitivity
2instantiation4, 5, 50, 6, 7, 8, 11, 9, 12  ⊢  
  : , : , : , : , : , :
3instantiation10, 11, 12, 13  ⊢  
  : , : , :
4theorem  ⊢  
 proveit.numbers.addition.disassociation
5theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
6axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
7instantiation14  ⊢  
  : , :
8theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
9instantiation48, 16, 15  ⊢  
  : , : , :
10theorem  ⊢  
 proveit.numbers.addition.subtraction.add_cancel_triple_12
11instantiation48, 16, 19  ⊢  
  : , : , :
12instantiation48, 16, 17  ⊢  
  : , : , :
13instantiation18  ⊢  
  :
14theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
15instantiation27, 19  ⊢  
  :
16theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
17instantiation20, 21, 32  ⊢  
  : , :
18axiom  ⊢  
 proveit.logic.equality.equals_reflexivity
19instantiation22, 23, 24, 25  ⊢  
  : , : , :
20theorem  ⊢  
 proveit.numbers.multiplication.mult_real_closure_bin
21instantiation48, 40, 26  ⊢  
  : , : , :
22theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.all_in_interval_oo__is__real
23instantiation27, 28  ⊢  
  :
24theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
25assumption  ⊢  
26instantiation48, 29, 30  ⊢  
  : , : , :
27theorem  ⊢  
 proveit.numbers.negation.real_closure
28instantiation31, 32, 33, 34  ⊢  
  : , :
29theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational
30instantiation35, 36, 37  ⊢  
  : , :
31theorem  ⊢  
 proveit.numbers.division.div_real_closure
32instantiation48, 38, 39  ⊢  
  : , : , :
33instantiation48, 40, 41  ⊢  
  : , : , :
34instantiation42, 45  ⊢  
  :
35theorem  ⊢  
 proveit.numbers.division.div_rational_pos_closure
36instantiation48, 44, 43  ⊢  
  : , : , :
37instantiation48, 44, 45  ⊢  
  : , : , :
38theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.real_pos_within_real
39theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.pi_is_real_pos
40theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
41instantiation48, 46, 47  ⊢  
  : , : , :
42theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos
43theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
44theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos
45theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
46theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
47instantiation48, 49, 50  ⊢  
  : , : , :
48theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
49theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
50theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2