logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  :
1theorem  ⊢  
 proveit.trigonometry.sine_linear_bound_nonpos
2instantiation4, 54, 5  ⊢  
  :
3instantiation6, 7, 62, 54, 8, 9*, 10*  ⊢  
  : , : , :
4theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.nonpos_real_is_real_nonpos
5instantiation11, 62, 63, 64  ⊢  
  : , : , :
6theorem  ⊢  
 proveit.numbers.addition.weak_bound_via_left_term_bound
7instantiation12, 48, 70  ⊢  
  : , :
8instantiation13, 62, 63, 64  ⊢  
  : , : , :
9instantiation51, 14, 15  ⊢  
  : , : , :
10instantiation16, 17, 29, 18  ⊢  
  : , : , : , :
11theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.interval_cc_upper_bound
12theorem  ⊢  
 proveit.numbers.addition.add_real_closure_bin
13theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.interval_cc_lower_bound
14instantiation51, 19, 20  ⊢  
  : , : , :
15instantiation51, 21, 22  ⊢  
  : , : , :
16theorem  ⊢  
 proveit.logic.equality.four_chain_transitivity
17instantiation51, 23, 24  ⊢  
  : , : , :
18instantiation25, 34  ⊢  
  : , :
19instantiation56, 26  ⊢  
  : , : , :
20instantiation56, 30  ⊢  
  : , : , :
21instantiation35, 36, 103, 37, 38, 39, 27, 40, 43  ⊢  
  : , : , : , : , : , :
22instantiation28, 43, 40, 29  ⊢  
  : , : , :
23instantiation56, 30  ⊢  
  : , : , :
24instantiation51, 31, 32  ⊢  
  : , : , :
25theorem  ⊢  
 proveit.logic.equality.equals_reversal
26instantiation56, 34  ⊢  
  : , : , :
27instantiation33, 43  ⊢  
  :
28theorem  ⊢  
 proveit.numbers.addition.subtraction.add_cancel_triple_31
29instantiation50  ⊢  
  :
30instantiation56, 34  ⊢  
  : , : , :
31instantiation35, 36, 103, 37, 38, 39, 42, 40, 43  ⊢  
  : , : , : , : , : , :
32instantiation41, 42, 43, 44  ⊢  
  : , : , :
33theorem  ⊢  
 proveit.numbers.negation.complex_closure
34instantiation45, 59, 74, 78, 46*  ⊢  
  : , :
35theorem  ⊢  
 proveit.numbers.addition.disassociation
36theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
37axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
38instantiation47  ⊢  
  : , :
39theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
40instantiation101, 81, 48  ⊢  
  : , : , :
41theorem  ⊢  
 proveit.numbers.addition.subtraction.add_cancel_triple_12
42instantiation101, 81, 54  ⊢  
  : , : , :
43instantiation101, 81, 49  ⊢  
  : , : , :
44instantiation50  ⊢  
  :
45theorem  ⊢  
 proveit.numbers.division.div_as_mult
46instantiation51, 52, 53  ⊢  
  : , : , :
47theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
48instantiation69, 54  ⊢  
  :
49instantiation55, 68, 77  ⊢  
  : , :
50axiom  ⊢  
 proveit.logic.equality.equals_reflexivity
51axiom  ⊢  
 proveit.logic.equality.equals_transitivity
52instantiation56, 57  ⊢  
  : , : , :
53instantiation58, 59, 60  ⊢  
  : , :
54instantiation61, 62, 63, 64  ⊢  
  : , : , :
55theorem  ⊢  
 proveit.numbers.multiplication.mult_real_closure_bin
56axiom  ⊢  
 proveit.logic.equality.substitution
57instantiation65, 66, 98, 67*  ⊢  
  : , :
58theorem  ⊢  
 proveit.numbers.multiplication.commutation
59instantiation101, 81, 77  ⊢  
  : , : , :
60instantiation101, 81, 68  ⊢  
  : , : , :
61theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.all_in_interval_cc__is__real
62instantiation69, 70  ⊢  
  :
63theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
64assumption  ⊢  
65theorem  ⊢  
 proveit.numbers.exponentiation.neg_power_as_div
66instantiation101, 71, 72  ⊢  
  : , : , :
67instantiation73, 74  ⊢  
  :
68instantiation101, 90, 75  ⊢  
  : , : , :
69theorem  ⊢  
 proveit.numbers.negation.real_closure
70instantiation76, 77, 82, 78  ⊢  
  : , :
71theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero
72instantiation101, 79, 80  ⊢  
  : , : , :
73theorem  ⊢  
 proveit.numbers.exponentiation.complex_x_to_first_power_is_x
74instantiation101, 81, 82  ⊢  
  : , : , :
75instantiation101, 83, 84  ⊢  
  : , : , :
76theorem  ⊢  
 proveit.numbers.division.div_real_closure
77instantiation101, 85, 86  ⊢  
  : , : , :
78instantiation87, 100  ⊢  
  :
79theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero
80instantiation101, 88, 89  ⊢  
  : , : , :
81theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
82instantiation101, 90, 91  ⊢  
  : , : , :
83theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational
84instantiation92, 93, 94  ⊢  
  : , :
85theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.real_pos_within_real
86theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.pi_is_real_pos
87theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos
88theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero
89instantiation101, 95, 100  ⊢  
  : , : , :
90theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
91instantiation101, 96, 97  ⊢  
  : , : , :
92theorem  ⊢  
 proveit.numbers.division.div_rational_pos_closure
93instantiation101, 99, 98  ⊢  
  : , : , :
94instantiation101, 99, 100  ⊢  
  : , : , :
95theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int
96theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
97instantiation101, 102, 103  ⊢  
  : , : , :
98theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
99theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos
100theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
101theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
102theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
103theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
*equality replacement requirements