| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : |
1 | theorem | | ⊢ |
| proveit.trigonometry.sine_linear_bound_nonpos |
2 | instantiation | 4, 54, 5 | ⊢ |
| : |
3 | instantiation | 6, 7, 62, 54, 8, 9*, 10* | ⊢ |
| : , : , : |
4 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nonpos_real_is_real_nonpos |
5 | instantiation | 11, 62, 63, 64 | ⊢ |
| : , : , : |
6 | theorem | | ⊢ |
| proveit.numbers.addition.weak_bound_via_left_term_bound |
7 | instantiation | 12, 48, 70 | ⊢ |
| : , : |
8 | instantiation | 13, 62, 63, 64 | ⊢ |
| : , : , : |
9 | instantiation | 51, 14, 15 | ⊢ |
| : , : , : |
10 | instantiation | 16, 17, 29, 18 | ⊢ |
| : , : , : , : |
11 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.interval_cc_upper_bound |
12 | theorem | | ⊢ |
| proveit.numbers.addition.add_real_closure_bin |
13 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.interval_cc_lower_bound |
14 | instantiation | 51, 19, 20 | ⊢ |
| : , : , : |
15 | instantiation | 51, 21, 22 | ⊢ |
| : , : , : |
16 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
17 | instantiation | 51, 23, 24 | ⊢ |
| : , : , : |
18 | instantiation | 25, 34 | ⊢ |
| : , : |
19 | instantiation | 56, 26 | ⊢ |
| : , : , : |
20 | instantiation | 56, 30 | ⊢ |
| : , : , : |
21 | instantiation | 35, 36, 103, 37, 38, 39, 27, 40, 43 | ⊢ |
| : , : , : , : , : , : |
22 | instantiation | 28, 43, 40, 29 | ⊢ |
| : , : , : |
23 | instantiation | 56, 30 | ⊢ |
| : , : , : |
24 | instantiation | 51, 31, 32 | ⊢ |
| : , : , : |
25 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
26 | instantiation | 56, 34 | ⊢ |
| : , : , : |
27 | instantiation | 33, 43 | ⊢ |
| : |
28 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_31 |
29 | instantiation | 50 | ⊢ |
| : |
30 | instantiation | 56, 34 | ⊢ |
| : , : , : |
31 | instantiation | 35, 36, 103, 37, 38, 39, 42, 40, 43 | ⊢ |
| : , : , : , : , : , : |
32 | instantiation | 41, 42, 43, 44 | ⊢ |
| : , : , : |
33 | theorem | | ⊢ |
| proveit.numbers.negation.complex_closure |
34 | instantiation | 45, 59, 74, 78, 46* | ⊢ |
| : , : |
35 | theorem | | ⊢ |
| proveit.numbers.addition.disassociation |
36 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
37 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
38 | instantiation | 47 | ⊢ |
| : , : |
39 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
40 | instantiation | 101, 81, 48 | ⊢ |
| : , : , : |
41 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.add_cancel_triple_12 |
42 | instantiation | 101, 81, 54 | ⊢ |
| : , : , : |
43 | instantiation | 101, 81, 49 | ⊢ |
| : , : , : |
44 | instantiation | 50 | ⊢ |
| : |
45 | theorem | | ⊢ |
| proveit.numbers.division.div_as_mult |
46 | instantiation | 51, 52, 53 | ⊢ |
| : , : , : |
47 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
48 | instantiation | 69, 54 | ⊢ |
| : |
49 | instantiation | 55, 68, 77 | ⊢ |
| : , : |
50 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
51 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
52 | instantiation | 56, 57 | ⊢ |
| : , : , : |
53 | instantiation | 58, 59, 60 | ⊢ |
| : , : |
54 | instantiation | 61, 62, 63, 64 | ⊢ |
| : , : , : |
55 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_real_closure_bin |
56 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
57 | instantiation | 65, 66, 98, 67* | ⊢ |
| : , : |
58 | theorem | | ⊢ |
| proveit.numbers.multiplication.commutation |
59 | instantiation | 101, 81, 77 | ⊢ |
| : , : , : |
60 | instantiation | 101, 81, 68 | ⊢ |
| : , : , : |
61 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.all_in_interval_cc__is__real |
62 | instantiation | 69, 70 | ⊢ |
| : |
63 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
64 | assumption | | ⊢ |
65 | theorem | | ⊢ |
| proveit.numbers.exponentiation.neg_power_as_div |
66 | instantiation | 101, 71, 72 | ⊢ |
| : , : , : |
67 | instantiation | 73, 74 | ⊢ |
| : |
68 | instantiation | 101, 90, 75 | ⊢ |
| : , : , : |
69 | theorem | | ⊢ |
| proveit.numbers.negation.real_closure |
70 | instantiation | 76, 77, 82, 78 | ⊢ |
| : , : |
71 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
72 | instantiation | 101, 79, 80 | ⊢ |
| : , : , : |
73 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
74 | instantiation | 101, 81, 82 | ⊢ |
| : , : , : |
75 | instantiation | 101, 83, 84 | ⊢ |
| : , : , : |
76 | theorem | | ⊢ |
| proveit.numbers.division.div_real_closure |
77 | instantiation | 101, 85, 86 | ⊢ |
| : , : , : |
78 | instantiation | 87, 100 | ⊢ |
| : |
79 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
80 | instantiation | 101, 88, 89 | ⊢ |
| : , : , : |
81 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
82 | instantiation | 101, 90, 91 | ⊢ |
| : , : , : |
83 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
84 | instantiation | 92, 93, 94 | ⊢ |
| : , : |
85 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
86 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
87 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
88 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
89 | instantiation | 101, 95, 100 | ⊢ |
| : , : , : |
90 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
91 | instantiation | 101, 96, 97 | ⊢ |
| : , : , : |
92 | theorem | | ⊢ |
| proveit.numbers.division.div_rational_pos_closure |
93 | instantiation | 101, 99, 98 | ⊢ |
| : , : , : |
94 | instantiation | 101, 99, 100 | ⊢ |
| : , : , : |
95 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
96 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
97 | instantiation | 101, 102, 103 | ⊢ |
| : , : , : |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
99 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
100 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
101 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
102 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
103 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |