logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  :
1theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.nonpos_real_is_real_nonpos
2instantiation4, 6, 7, 8  ⊢  
  : , : , :
3instantiation5, 6, 7, 8  ⊢  
  : , : , :
4theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.all_in_interval_cc__is__real
5theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.interval_cc_upper_bound
6instantiation9, 10  ⊢  
  :
7theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
8assumption  ⊢  
9theorem  ⊢  
 proveit.numbers.negation.real_closure
10instantiation11, 12, 13, 14  ⊢  
  : , :
11theorem  ⊢  
 proveit.numbers.division.div_real_closure
12instantiation23, 15, 16  ⊢  
  : , : , :
13instantiation23, 17, 18  ⊢  
  : , : , :
14instantiation19, 20  ⊢  
  :
15theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.real_pos_within_real
16theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.pi_is_real_pos
17theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
18instantiation23, 21, 22  ⊢  
  : , : , :
19theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos
20theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
21theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
22instantiation23, 24, 25  ⊢  
  : , : , :
23theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
24theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
25theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2