logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4, 5, 6*, 7*  ⊢  
  : , : , :
1theorem  ⊢  
 proveit.numbers.addition.weak_bound_via_left_term_bound
2instantiation8, 44, 66  ⊢  
  : , :
3reference58  ⊢  
4reference50  ⊢  
5instantiation9, 58, 59, 60  ⊢  
  : , : , :
6instantiation47, 10, 11  ⊢  
  : , : , :
7instantiation12, 13, 25, 14  ⊢  
  : , : , : , :
8theorem  ⊢  
 proveit.numbers.addition.add_real_closure_bin
9theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.interval_cc_lower_bound
10instantiation47, 15, 16  ⊢  
  : , : , :
11instantiation47, 17, 18  ⊢  
  : , : , :
12theorem  ⊢  
 proveit.logic.equality.four_chain_transitivity
13instantiation47, 19, 20  ⊢  
  : , : , :
14instantiation21, 30  ⊢  
  : , :
15instantiation52, 22  ⊢  
  : , : , :
16instantiation52, 26  ⊢  
  : , : , :
17instantiation31, 32, 99, 33, 34, 35, 23, 36, 39  ⊢  
  : , : , : , : , : , :
18instantiation24, 39, 36, 25  ⊢  
  : , : , :
19instantiation52, 26  ⊢  
  : , : , :
20instantiation47, 27, 28  ⊢  
  : , : , :
21theorem  ⊢  
 proveit.logic.equality.equals_reversal
22instantiation52, 30  ⊢  
  : , : , :
23instantiation29, 39  ⊢  
  :
24theorem  ⊢  
 proveit.numbers.addition.subtraction.add_cancel_triple_31
25instantiation46  ⊢  
  :
26instantiation52, 30  ⊢  
  : , : , :
27instantiation31, 32, 99, 33, 34, 35, 38, 36, 39  ⊢  
  : , : , : , : , : , :
28instantiation37, 38, 39, 40  ⊢  
  : , : , :
29theorem  ⊢  
 proveit.numbers.negation.complex_closure
30instantiation41, 55, 70, 74, 42*  ⊢  
  : , :
31theorem  ⊢  
 proveit.numbers.addition.disassociation
32theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
33axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
34instantiation43  ⊢  
  : , :
35theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
36instantiation97, 77, 44  ⊢  
  : , : , :
37theorem  ⊢  
 proveit.numbers.addition.subtraction.add_cancel_triple_12
38instantiation97, 77, 50  ⊢  
  : , : , :
39instantiation97, 77, 45  ⊢  
  : , : , :
40instantiation46  ⊢  
  :
41theorem  ⊢  
 proveit.numbers.division.div_as_mult
42instantiation47, 48, 49  ⊢  
  : , : , :
43theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
44instantiation65, 50  ⊢  
  :
45instantiation51, 64, 73  ⊢  
  : , :
46axiom  ⊢  
 proveit.logic.equality.equals_reflexivity
47axiom  ⊢  
 proveit.logic.equality.equals_transitivity
48instantiation52, 53  ⊢  
  : , : , :
49instantiation54, 55, 56  ⊢  
  : , :
50instantiation57, 58, 59, 60  ⊢  
  : , : , :
51theorem  ⊢  
 proveit.numbers.multiplication.mult_real_closure_bin
52axiom  ⊢  
 proveit.logic.equality.substitution
53instantiation61, 62, 94, 63*  ⊢  
  : , :
54theorem  ⊢  
 proveit.numbers.multiplication.commutation
55instantiation97, 77, 73  ⊢  
  : , : , :
56instantiation97, 77, 64  ⊢  
  : , : , :
57theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.all_in_interval_cc__is__real
58instantiation65, 66  ⊢  
  :
59theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
60assumption  ⊢  
61theorem  ⊢  
 proveit.numbers.exponentiation.neg_power_as_div
62instantiation97, 67, 68  ⊢  
  : , : , :
63instantiation69, 70  ⊢  
  :
64instantiation97, 86, 71  ⊢  
  : , : , :
65theorem  ⊢  
 proveit.numbers.negation.real_closure
66instantiation72, 73, 78, 74  ⊢  
  : , :
67theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero
68instantiation97, 75, 76  ⊢  
  : , : , :
69theorem  ⊢  
 proveit.numbers.exponentiation.complex_x_to_first_power_is_x
70instantiation97, 77, 78  ⊢  
  : , : , :
71instantiation97, 79, 80  ⊢  
  : , : , :
72theorem  ⊢  
 proveit.numbers.division.div_real_closure
73instantiation97, 81, 82  ⊢  
  : , : , :
74instantiation83, 96  ⊢  
  :
75theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero
76instantiation97, 84, 85  ⊢  
  : , : , :
77theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
78instantiation97, 86, 87  ⊢  
  : , : , :
79theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational
80instantiation88, 89, 90  ⊢  
  : , :
81theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.real_pos_within_real
82theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.pi_is_real_pos
83theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos
84theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero
85instantiation97, 91, 96  ⊢  
  : , : , :
86theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
87instantiation97, 92, 93  ⊢  
  : , : , :
88theorem  ⊢  
 proveit.numbers.division.div_rational_pos_closure
89instantiation97, 95, 94  ⊢  
  : , : , :
90instantiation97, 95, 96  ⊢  
  : , : , :
91theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int
92theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
93instantiation97, 98, 99  ⊢  
  : , : , :
94theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
95theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos
96theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
97theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
98theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
99theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
*equality replacement requirements