| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6*, 7* | ⊢  |
| : , : , :  |
1 | theorem | | ⊢  |
| proveit.numbers.addition.weak_bound_via_left_term_bound |
2 | instantiation | 8, 44, 66 | ⊢  |
| : , :  |
3 | reference | 58 | ⊢  |
4 | reference | 50 | ⊢  |
5 | instantiation | 9, 58, 59, 60 | ⊢  |
| : , : , :  |
6 | instantiation | 47, 10, 11 | ⊢  |
| : , : , :  |
7 | instantiation | 12, 13, 25, 14 | ⊢  |
| : , : , : , :  |
8 | theorem | | ⊢  |
| proveit.numbers.addition.add_real_closure_bin |
9 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.interval_cc_lower_bound |
10 | instantiation | 47, 15, 16 | ⊢  |
| : , : , :  |
11 | instantiation | 47, 17, 18 | ⊢  |
| : , : , :  |
12 | theorem | | ⊢  |
| proveit.logic.equality.four_chain_transitivity |
13 | instantiation | 47, 19, 20 | ⊢  |
| : , : , :  |
14 | instantiation | 21, 30 | ⊢  |
| : , :  |
15 | instantiation | 52, 22 | ⊢  |
| : , : , :  |
16 | instantiation | 52, 26 | ⊢  |
| : , : , :  |
17 | instantiation | 31, 32, 99, 33, 34, 35, 23, 36, 39 | ⊢  |
| : , : , : , : , : , :  |
18 | instantiation | 24, 39, 36, 25 | ⊢  |
| : , : , :  |
19 | instantiation | 52, 26 | ⊢  |
| : , : , :  |
20 | instantiation | 47, 27, 28 | ⊢  |
| : , : , :  |
21 | theorem | | ⊢  |
| proveit.logic.equality.equals_reversal |
22 | instantiation | 52, 30 | ⊢  |
| : , : , :  |
23 | instantiation | 29, 39 | ⊢  |
| :  |
24 | theorem | | ⊢  |
| proveit.numbers.addition.subtraction.add_cancel_triple_31 |
25 | instantiation | 46 | ⊢  |
| :  |
26 | instantiation | 52, 30 | ⊢  |
| : , : , :  |
27 | instantiation | 31, 32, 99, 33, 34, 35, 38, 36, 39 | ⊢  |
| : , : , : , : , : , :  |
28 | instantiation | 37, 38, 39, 40 | ⊢  |
| : , : , :  |
29 | theorem | | ⊢  |
| proveit.numbers.negation.complex_closure |
30 | instantiation | 41, 55, 70, 74, 42* | ⊢  |
| : , :  |
31 | theorem | | ⊢  |
| proveit.numbers.addition.disassociation |
32 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat1 |
33 | axiom | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
34 | instantiation | 43 | ⊢  |
| : , :  |
35 | theorem | | ⊢  |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
36 | instantiation | 97, 77, 44 | ⊢  |
| : , : , :  |
37 | theorem | | ⊢  |
| proveit.numbers.addition.subtraction.add_cancel_triple_12 |
38 | instantiation | 97, 77, 50 | ⊢  |
| : , : , :  |
39 | instantiation | 97, 77, 45 | ⊢  |
| : , : , :  |
40 | instantiation | 46 | ⊢  |
| :  |
41 | theorem | | ⊢  |
| proveit.numbers.division.div_as_mult |
42 | instantiation | 47, 48, 49 | ⊢  |
| : , : , :  |
43 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
44 | instantiation | 65, 50 | ⊢  |
| :  |
45 | instantiation | 51, 64, 73 | ⊢  |
| : , :  |
46 | axiom | | ⊢  |
| proveit.logic.equality.equals_reflexivity |
47 | axiom | | ⊢  |
| proveit.logic.equality.equals_transitivity |
48 | instantiation | 52, 53 | ⊢  |
| : , : , :  |
49 | instantiation | 54, 55, 56 | ⊢  |
| : , :  |
50 | instantiation | 57, 58, 59, 60 | ⊢  |
| : , : , :  |
51 | theorem | | ⊢  |
| proveit.numbers.multiplication.mult_real_closure_bin |
52 | axiom | | ⊢  |
| proveit.logic.equality.substitution |
53 | instantiation | 61, 62, 94, 63* | ⊢  |
| : , :  |
54 | theorem | | ⊢  |
| proveit.numbers.multiplication.commutation |
55 | instantiation | 97, 77, 73 | ⊢  |
| : , : , :  |
56 | instantiation | 97, 77, 64 | ⊢  |
| : , : , :  |
57 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.all_in_interval_cc__is__real |
58 | instantiation | 65, 66 | ⊢  |
| :  |
59 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
60 | assumption | | ⊢  |
61 | theorem | | ⊢  |
| proveit.numbers.exponentiation.neg_power_as_div |
62 | instantiation | 97, 67, 68 | ⊢  |
| : , : , :  |
63 | instantiation | 69, 70 | ⊢  |
| :  |
64 | instantiation | 97, 86, 71 | ⊢  |
| : , : , :  |
65 | theorem | | ⊢  |
| proveit.numbers.negation.real_closure |
66 | instantiation | 72, 73, 78, 74 | ⊢  |
| : , :  |
67 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
68 | instantiation | 97, 75, 76 | ⊢  |
| : , : , :  |
69 | theorem | | ⊢  |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
70 | instantiation | 97, 77, 78 | ⊢  |
| : , : , :  |
71 | instantiation | 97, 79, 80 | ⊢  |
| : , : , :  |
72 | theorem | | ⊢  |
| proveit.numbers.division.div_real_closure |
73 | instantiation | 97, 81, 82 | ⊢  |
| : , : , :  |
74 | instantiation | 83, 96 | ⊢  |
| :  |
75 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
76 | instantiation | 97, 84, 85 | ⊢  |
| : , : , :  |
77 | theorem | | ⊢  |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
78 | instantiation | 97, 86, 87 | ⊢  |
| : , : , :  |
79 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
80 | instantiation | 88, 89, 90 | ⊢  |
| : , :  |
81 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
82 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
83 | theorem | | ⊢  |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
84 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
85 | instantiation | 97, 91, 96 | ⊢  |
| : , : , :  |
86 | theorem | | ⊢  |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
87 | instantiation | 97, 92, 93 | ⊢  |
| : , : , :  |
88 | theorem | | ⊢  |
| proveit.numbers.division.div_rational_pos_closure |
89 | instantiation | 97, 95, 94 | ⊢  |
| : , : , :  |
90 | instantiation | 97, 95, 96 | ⊢  |
| : , : , :  |
91 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
92 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
93 | instantiation | 97, 98, 99 | ⊢  |
| : , : , :  |
94 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat1 |
95 | theorem | | ⊢  |
| proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
96 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.posnat2 |
97 | theorem | | ⊢  |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
98 | theorem | | ⊢  |
| proveit.numbers.number_sets.integers.nat_within_int |
99 | theorem | | ⊢  |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |