logo

Expression of type Equals

from the theory of proveit.physics.quantum.circuits

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit.logic import Equals
from proveit.physics.quantum.circuits import QcircuitEquiv, circuit_Akm, circuit_Bkn, circuit_permuted_Akm, circuit_permuted_Bkn
In [2]:
# build up the expression from sub-expressions
expr = Equals(QcircuitEquiv(circuit_Akm, circuit_Bkn), QcircuitEquiv(circuit_permuted_Akm, circuit_permuted_Bkn)).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \gate{A_{1, 1}~\mbox{on}~R_{1, 1}} \qwx[1] & \gate{A_{2, 1}~\mbox{on}~R_{2, 1}} \qwx[1] & \gate{\cdots} \qwx[1] & \gate{A_{m, 1}~\mbox{on}~R_{m, 1}} \qwx[1] & \qw \\
& \gate{A_{1, 2}~\mbox{on}~R_{1, 2}} \qwx[1] & \gate{A_{2, 2}~\mbox{on}~R_{2, 2}} \qwx[1] & \gate{\cdots} \qwx[1] & \gate{A_{m, 2}~\mbox{on}~R_{m, 2}} \qwx[1] & \qw \\
& \gate{\vdots} \qwx[1] & \gate{\vdots} \qwx[1] & \gate{\ddots} \qwx[1] & \gate{\vdots} \qwx[1] & \qw \\
& \gate{A_{1, k}~\mbox{on}~R_{1, k}} & \gate{A_{2, k}~\mbox{on}~R_{2, k}} & \gate{\cdots} & \gate{A_{m, k}~\mbox{on}~R_{m, k}} & \qw
} \end{array}\right) \cong \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \gate{B_{1, 1}~\mbox{on}~S_{1, 1}} \qwx[1] & \gate{B_{2, 1}~\mbox{on}~S_{2, 1}} \qwx[1] & \gate{\cdots} \qwx[1] & \gate{B_{n, 1}~\mbox{on}~S_{n, 1}} \qwx[1] & \qw \\
& \gate{B_{1, 2}~\mbox{on}~S_{1, 2}} \qwx[1] & \gate{B_{2, 2}~\mbox{on}~S_{2, 2}} \qwx[1] & \gate{\cdots} \qwx[1] & \gate{B_{n, 2}~\mbox{on}~S_{n, 2}} \qwx[1] & \qw \\
& \gate{\vdots} \qwx[1] & \gate{\vdots} \qwx[1] & \gate{\ddots} \qwx[1] & \gate{\vdots} \qwx[1] & \qw \\
& \gate{B_{1, k}~\mbox{on}~S_{1, k}} & \gate{B_{2, k}~\mbox{on}~S_{2, k}} & \gate{\cdots} & \gate{B_{n, k}~\mbox{on}~S_{n, k}} & \qw
} \end{array}\right)\right) =  \\ \left(\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \gate{A_{p\left(1\right), 1}~\mbox{on}~p^{\leftarrow}\left(R_{p\left(1\right), 1}\right)} \qwx[1] & \gate{A_{p\left(2\right), 1}~\mbox{on}~p^{\leftarrow}\left(R_{p\left(2\right), 1}\right)} \qwx[1] & \gate{\cdots} \qwx[1] & \gate{A_{p\left(m\right), 1}~\mbox{on}~p^{\leftarrow}\left(R_{p\left(m\right), 1}\right)} \qwx[1] & \qw \\
& \gate{A_{p\left(1\right), 2}~\mbox{on}~p^{\leftarrow}\left(R_{p\left(1\right), 2}\right)} \qwx[1] & \gate{A_{p\left(2\right), 2}~\mbox{on}~p^{\leftarrow}\left(R_{p\left(2\right), 2}\right)} \qwx[1] & \gate{\cdots} \qwx[1] & \gate{A_{p\left(m\right), 2}~\mbox{on}~p^{\leftarrow}\left(R_{p\left(m\right), 2}\right)} \qwx[1] & \qw \\
& \gate{\vdots} \qwx[1] & \gate{\vdots} \qwx[1] & \gate{\ddots} \qwx[1] & \gate{\vdots} \qwx[1] & \qw \\
& \gate{A_{p\left(1\right), k}~\mbox{on}~p^{\leftarrow}\left(R_{p\left(1\right), k}\right)} & \gate{A_{p\left(2\right), k}~\mbox{on}~p^{\leftarrow}\left(R_{p\left(2\right), k}\right)} & \gate{\cdots} & \gate{A_{p\left(m\right), k}~\mbox{on}~p^{\leftarrow}\left(R_{p\left(m\right), k}\right)} & \qw
} \end{array}\right) \cong \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \gate{B_{p\left(1\right), 1}~\mbox{on}~p^{\leftarrow}\left(S_{p\left(1\right), 1}\right)} \qwx[1] & \gate{B_{p\left(2\right), 1}~\mbox{on}~p^{\leftarrow}\left(S_{p\left(2\right), 1}\right)} \qwx[1] & \gate{\cdots} \qwx[1] & \gate{B_{p\left(n\right), 1}~\mbox{on}~p^{\leftarrow}\left(S_{p\left(n\right), 1}\right)} \qwx[1] & \qw \\
& \gate{B_{p\left(1\right), 2}~\mbox{on}~p^{\leftarrow}\left(S_{p\left(1\right), 2}\right)} \qwx[1] & \gate{B_{p\left(2\right), 2}~\mbox{on}~p^{\leftarrow}\left(S_{p\left(2\right), 2}\right)} \qwx[1] & \gate{\cdots} \qwx[1] & \gate{B_{p\left(n\right), 2}~\mbox{on}~p^{\leftarrow}\left(S_{p\left(n\right), 2}\right)} \qwx[1] & \qw \\
& \gate{\vdots} \qwx[1] & \gate{\vdots} \qwx[1] & \gate{\ddots} \qwx[1] & \gate{\vdots} \qwx[1] & \qw \\
& \gate{B_{p\left(1\right), k}~\mbox{on}~p^{\leftarrow}\left(S_{p\left(1\right), k}\right)} & \gate{B_{p\left(2\right), k}~\mbox{on}~p^{\leftarrow}\left(S_{p\left(2\right), k}\right)} & \gate{\cdots} & \gate{B_{p\left(n\right), k}~\mbox{on}~p^{\leftarrow}\left(S_{p\left(n\right), k}\right)} & \qw
} \end{array}\right)\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 9
6Literal
7ExprTuple10, 11
8Operationoperator: 15
operands: 12
9Operationoperator: 15
operands: 13
10Operationoperator: 15
operands: 14
11Operationoperator: 15
operands: 16
12ExprTuple17
13ExprTuple18
14ExprTuple19
15Literal
16ExprTuple20
17ExprRangelambda_map: 21
start_index: 39
end_index: 24
18ExprRangelambda_map: 22
start_index: 39
end_index: 26
19ExprRangelambda_map: 23
start_index: 39
end_index: 24
20ExprRangelambda_map: 25
start_index: 39
end_index: 26
21Lambdaparameter: 76
body: 27
22Lambdaparameter: 76
body: 28
23Lambdaparameter: 76
body: 29
24Variable
25Lambdaparameter: 76
body: 30
26Variable
27ExprTuple31
28ExprTuple32
29ExprTuple33
30ExprTuple34
31ExprRangelambda_map: 35
start_index: 39
end_index: 40
32ExprRangelambda_map: 36
start_index: 39
end_index: 40
33ExprRangelambda_map: 37
start_index: 39
end_index: 40
34ExprRangelambda_map: 38
start_index: 39
end_index: 40
35Lambdaparameter: 73
body: 41
36Lambdaparameter: 73
body: 42
37Lambdaparameter: 73
body: 43
38Lambdaparameter: 73
body: 45
39Literal
40Variable
41Operationoperator: 49
operands: 46
42Operationoperator: 49
operands: 47
43Operationoperator: 49
operands: 48
44ExprTuple73
45Operationoperator: 49
operands: 50
46NamedExprselement: 51
targets: 52
47NamedExprselement: 53
targets: 54
48NamedExprselement: 55
targets: 56
49Literal
50NamedExprselement: 57
targets: 58
51IndexedVarvariable: 60
indices: 59
52IndexedVarvariable: 69
indices: 59
53IndexedVarvariable: 62
indices: 59
54IndexedVarvariable: 70
indices: 59
55IndexedVarvariable: 60
indices: 71
56Operationoperator: 63
operand: 65
57IndexedVarvariable: 62
indices: 71
58Operationoperator: 63
operand: 68
59ExprTuple76, 73
60Variable
61ExprTuple65
62Variable
63Operationoperator: 66
operand: 74
64ExprTuple68
65IndexedVarvariable: 69
indices: 71
66Literal
67ExprTuple74
68IndexedVarvariable: 70
indices: 71
69Variable
70Variable
71ExprTuple72, 73
72Operationoperator: 74
operand: 76
73Variable
74Variable
75ExprTuple76
76Variable