logo

Expression of type QcircuitEquiv

from the theory of proveit.physics.quantum.circuits

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit.physics.quantum.circuits import QcircuitEquiv, circuit_Akm, circuit_Bkn
In [2]:
# build up the expression from sub-expressions
expr = QcircuitEquiv(circuit_Akm, circuit_Bkn)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \gate{A_{1, 1}~\mbox{on}~R_{1, 1}} \qwx[1] & \gate{A_{2, 1}~\mbox{on}~R_{2, 1}} \qwx[1] & \gate{\cdots} \qwx[1] & \gate{A_{m, 1}~\mbox{on}~R_{m, 1}} \qwx[1] & \qw \\
& \gate{A_{1, 2}~\mbox{on}~R_{1, 2}} \qwx[1] & \gate{A_{2, 2}~\mbox{on}~R_{2, 2}} \qwx[1] & \gate{\cdots} \qwx[1] & \gate{A_{m, 2}~\mbox{on}~R_{m, 2}} \qwx[1] & \qw \\
& \gate{\vdots} \qwx[1] & \gate{\vdots} \qwx[1] & \gate{\ddots} \qwx[1] & \gate{\vdots} \qwx[1] & \qw \\
& \gate{A_{1, k}~\mbox{on}~R_{1, k}} & \gate{A_{2, k}~\mbox{on}~R_{2, k}} & \gate{\cdots} & \gate{A_{m, k}~\mbox{on}~R_{m, k}} & \qw
} \end{array}\right) \cong \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \gate{B_{1, 1}~\mbox{on}~S_{1, 1}} \qwx[1] & \gate{B_{2, 1}~\mbox{on}~S_{2, 1}} \qwx[1] & \gate{\cdots} \qwx[1] & \gate{B_{n, 1}~\mbox{on}~S_{n, 1}} \qwx[1] & \qw \\
& \gate{B_{1, 2}~\mbox{on}~S_{1, 2}} \qwx[1] & \gate{B_{2, 2}~\mbox{on}~S_{2, 2}} \qwx[1] & \gate{\cdots} \qwx[1] & \gate{B_{n, 2}~\mbox{on}~S_{n, 2}} \qwx[1] & \qw \\
& \gate{\vdots} \qwx[1] & \gate{\vdots} \qwx[1] & \gate{\ddots} \qwx[1] & \gate{\vdots} \qwx[1] & \qw \\
& \gate{B_{1, k}~\mbox{on}~S_{1, k}} & \gate{B_{2, k}~\mbox{on}~S_{2, k}} & \gate{\cdots} & \gate{B_{n, k}~\mbox{on}~S_{n, k}} & \qw
} \end{array}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8
6Literal
7ExprTuple9
8ExprRangelambda_map: 10
start_index: 21
end_index: 11
9ExprRangelambda_map: 12
start_index: 21
end_index: 13
10Lambdaparameter: 38
body: 14
11Variable
12Lambdaparameter: 38
body: 16
13Variable
14ExprTuple17
15ExprTuple38
16ExprTuple18
17ExprRangelambda_map: 19
start_index: 21
end_index: 22
18ExprRangelambda_map: 20
start_index: 21
end_index: 22
19Lambdaparameter: 39
body: 23
20Lambdaparameter: 39
body: 25
21Literal
22Variable
23Operationoperator: 27
operands: 26
24ExprTuple39
25Operationoperator: 27
operands: 28
26NamedExprselement: 29
targets: 30
27Literal
28NamedExprselement: 31
targets: 32
29IndexedVarvariable: 33
indices: 37
30IndexedVarvariable: 34
indices: 37
31IndexedVarvariable: 35
indices: 37
32IndexedVarvariable: 36
indices: 37
33Variable
34Variable
35Variable
36Variable
37ExprTuple38, 39
38Variable
39Variable