logo

Expression of type QcircuitEquiv

from the theory of proveit.physics.quantum.circuits

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit.physics.quantum.circuits import QcircuitEquiv, circuit_permuted_Akm, circuit_permuted_Bkn
In [2]:
# build up the expression from sub-expressions
expr = QcircuitEquiv(circuit_permuted_Akm, circuit_permuted_Bkn)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \gate{A_{p\left(1\right), 1}~\mbox{on}~p^{\leftarrow}\left(R_{p\left(1\right), 1}\right)} \qwx[1] & \gate{A_{p\left(2\right), 1}~\mbox{on}~p^{\leftarrow}\left(R_{p\left(2\right), 1}\right)} \qwx[1] & \gate{\cdots} \qwx[1] & \gate{A_{p\left(m\right), 1}~\mbox{on}~p^{\leftarrow}\left(R_{p\left(m\right), 1}\right)} \qwx[1] & \qw \\
& \gate{A_{p\left(1\right), 2}~\mbox{on}~p^{\leftarrow}\left(R_{p\left(1\right), 2}\right)} \qwx[1] & \gate{A_{p\left(2\right), 2}~\mbox{on}~p^{\leftarrow}\left(R_{p\left(2\right), 2}\right)} \qwx[1] & \gate{\cdots} \qwx[1] & \gate{A_{p\left(m\right), 2}~\mbox{on}~p^{\leftarrow}\left(R_{p\left(m\right), 2}\right)} \qwx[1] & \qw \\
& \gate{\vdots} \qwx[1] & \gate{\vdots} \qwx[1] & \gate{\ddots} \qwx[1] & \gate{\vdots} \qwx[1] & \qw \\
& \gate{A_{p\left(1\right), k}~\mbox{on}~p^{\leftarrow}\left(R_{p\left(1\right), k}\right)} & \gate{A_{p\left(2\right), k}~\mbox{on}~p^{\leftarrow}\left(R_{p\left(2\right), k}\right)} & \gate{\cdots} & \gate{A_{p\left(m\right), k}~\mbox{on}~p^{\leftarrow}\left(R_{p\left(m\right), k}\right)} & \qw
} \end{array}\right) \cong \left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \gate{B_{p\left(1\right), 1}~\mbox{on}~p^{\leftarrow}\left(S_{p\left(1\right), 1}\right)} \qwx[1] & \gate{B_{p\left(2\right), 1}~\mbox{on}~p^{\leftarrow}\left(S_{p\left(2\right), 1}\right)} \qwx[1] & \gate{\cdots} \qwx[1] & \gate{B_{p\left(n\right), 1}~\mbox{on}~p^{\leftarrow}\left(S_{p\left(n\right), 1}\right)} \qwx[1] & \qw \\
& \gate{B_{p\left(1\right), 2}~\mbox{on}~p^{\leftarrow}\left(S_{p\left(1\right), 2}\right)} \qwx[1] & \gate{B_{p\left(2\right), 2}~\mbox{on}~p^{\leftarrow}\left(S_{p\left(2\right), 2}\right)} \qwx[1] & \gate{\cdots} \qwx[1] & \gate{B_{p\left(n\right), 2}~\mbox{on}~p^{\leftarrow}\left(S_{p\left(n\right), 2}\right)} \qwx[1] & \qw \\
& \gate{\vdots} \qwx[1] & \gate{\vdots} \qwx[1] & \gate{\ddots} \qwx[1] & \gate{\vdots} \qwx[1] & \qw \\
& \gate{B_{p\left(1\right), k}~\mbox{on}~p^{\leftarrow}\left(S_{p\left(1\right), k}\right)} & \gate{B_{p\left(2\right), k}~\mbox{on}~p^{\leftarrow}\left(S_{p\left(2\right), k}\right)} & \gate{\cdots} & \gate{B_{p\left(n\right), k}~\mbox{on}~p^{\leftarrow}\left(S_{p\left(n\right), k}\right)} & \qw
} \end{array}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8
6Literal
7ExprTuple9
8ExprRangelambda_map: 10
start_index: 20
end_index: 11
9ExprRangelambda_map: 12
start_index: 20
end_index: 13
10Lambdaparameter: 48
body: 14
11Variable
12Lambdaparameter: 48
body: 15
13Variable
14ExprTuple16
15ExprTuple17
16ExprRangelambda_map: 18
start_index: 20
end_index: 21
17ExprRangelambda_map: 19
start_index: 20
end_index: 21
18Lambdaparameter: 45
body: 22
19Lambdaparameter: 45
body: 24
20Literal
21Variable
22Operationoperator: 26
operands: 25
23ExprTuple45
24Operationoperator: 26
operands: 27
25NamedExprselement: 28
targets: 29
26Literal
27NamedExprselement: 30
targets: 31
28IndexedVarvariable: 32
indices: 43
29Operationoperator: 35
operand: 37
30IndexedVarvariable: 34
indices: 43
31Operationoperator: 35
operand: 40
32Variable
33ExprTuple37
34Variable
35Operationoperator: 38
operand: 46
36ExprTuple40
37IndexedVarvariable: 41
indices: 43
38Literal
39ExprTuple46
40IndexedVarvariable: 42
indices: 43
41Variable
42Variable
43ExprTuple44, 45
44Operationoperator: 46
operand: 48
45Variable
46Variable
47ExprTuple48
48Variable