logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, l
from proveit.numbers import Exp, Mult, e, frac, i, one, pi, subtract, two
from proveit.physics.quantum.QPE import _delta_b_floor, _two_pow_t
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(subtract(one, Exp(e, Mult(two, pi, i, subtract(Mult(_two_pow_t, _delta_b_floor), l)))), subtract(one, Exp(e, Mult(two, pi, i, subtract(_delta_b_floor, frac(l, _two_pow_t))))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(1 - \mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \left(\left(2^{t} \cdot \delta_{b_{\textit{f}}}\right) - l\right)}, 1 - \mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \left(\delta_{b_{\textit{f}}} - \frac{l}{2^{t}}\right)}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 24
operands: 3
2Operationoperator: 24
operands: 4
3ExprTuple6, 5
4ExprTuple6, 7
5Operationoperator: 32
operand: 10
6Literal
7Operationoperator: 32
operand: 11
8ExprTuple10
9ExprTuple11
10Operationoperator: 43
operands: 12
11Operationoperator: 43
operands: 13
12ExprTuple15, 14
13ExprTuple15, 16
14Operationoperator: 29
operands: 17
15Literal
16Operationoperator: 29
operands: 18
17ExprTuple45, 20, 21, 19
18ExprTuple45, 20, 21, 22
19Operationoperator: 24
operands: 23
20Literal
21Literal
22Operationoperator: 24
operands: 25
23ExprTuple26, 27
24Literal
25ExprTuple34, 28
26Operationoperator: 29
operands: 30
27Operationoperator: 32
operand: 41
28Operationoperator: 32
operand: 35
29Literal
30ExprTuple42, 34
31ExprTuple41
32Literal
33ExprTuple35
34Operationoperator: 36
operand: 40
35Operationoperator: 38
operands: 39
36Literal
37ExprTuple40
38Literal
39ExprTuple41, 42
40Literal
41Variable
42Operationoperator: 43
operands: 44
43Literal
44ExprTuple45, 46
45Literal
46Literal