logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, l
from proveit.numbers import Mult, i, pi, subtract, two
from proveit.physics.quantum.QPE import _delta_b_floor, _two_pow_t
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(two, pi, i, subtract(Mult(_two_pow_t, _delta_b_floor), l))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(2, \pi, \mathsf{i}, \left(2^{t} \cdot \delta_{b_{\textit{f}}}\right) - l\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple19, 1, 2, 3
1Literal
2Literal
3Operationoperator: 4
operands: 5
4Literal
5ExprTuple6, 7
6Operationoperator: 8
operands: 9
7Operationoperator: 10
operand: 14
8Literal
9ExprTuple12, 13
10Literal
11ExprTuple14
12Operationoperator: 15
operands: 16
13Operationoperator: 17
operand: 21
14Variable
15Literal
16ExprTuple19, 20
17Literal
18ExprTuple21
19Literal
20Literal
21Literal