logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, l
from proveit.numbers import Exp, Mult, e, frac, i, pi, subtract, two
from proveit.physics.quantum.QPE import _delta_b_floor, _two_pow_t
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Exp(e, Mult(two, pi, i, subtract(_delta_b_floor, frac(l, _two_pow_t)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \left(\delta_{b_{\textit{f}}} - \frac{l}{2^{t}}\right)}\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Operationoperator: 24
operands: 2
2ExprTuple3, 4
3Literal
4Operationoperator: 5
operands: 6
5Literal
6ExprTuple26, 7, 8, 9
7Literal
8Literal
9Operationoperator: 10
operands: 11
10Literal
11ExprTuple12, 13
12Operationoperator: 14
operand: 18
13Operationoperator: 16
operand: 19
14Literal
15ExprTuple18
16Literal
17ExprTuple19
18Literal
19Operationoperator: 20
operands: 21
20Literal
21ExprTuple22, 23
22Variable
23Operationoperator: 24
operands: 25
24Literal
25ExprTuple26, 27
26Literal
27Literal