logo

Expression of type Exp

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import l
from proveit.numbers import Exp, Mult, e, frac, i, pi, subtract, two
from proveit.physics.quantum.QPE import _delta_b_floor, _two_pow_t
In [2]:
# build up the expression from sub-expressions
expr = Exp(e, Mult(two, pi, i, subtract(_delta_b_floor, frac(l, _two_pow_t))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \left(\delta_{b_{\textit{f}}} - \frac{l}{2^{t}}\right)}
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 23
operands: 1
1ExprTuple2, 3
2Literal
3Operationoperator: 4
operands: 5
4Literal
5ExprTuple25, 6, 7, 8
6Literal
7Literal
8Operationoperator: 9
operands: 10
9Literal
10ExprTuple11, 12
11Operationoperator: 13
operand: 17
12Operationoperator: 15
operand: 18
13Literal
14ExprTuple17
15Literal
16ExprTuple18
17Literal
18Operationoperator: 19
operands: 20
19Literal
20ExprTuple21, 22
21Variable
22Operationoperator: 23
operands: 24
23Literal
24ExprTuple25, 26
25Literal
26Literal