logo

Expression of type LessEq

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import e, l
from proveit.numbers import Add, Exp, LessEq, Mult, Sum, four, frac, one, two
from proveit.physics.quantum.QPE import Pfail, _diff_l_scaled_delta_floor, _neg_domain, _pos_domain
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [l]
sub_expr2 = frac(one, Exp(_diff_l_scaled_delta_floor, two))
expr = LessEq(Pfail(e), Mult(frac(one, four), Add(Sum(index_or_indices = sub_expr1, summand = sub_expr2, domain = _neg_domain), Sum(index_or_indices = sub_expr1, summand = sub_expr2, domain = _pos_domain))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left[P_{\rm fail}\right]\left(e\right) \leq \left(\frac{1}{4} \cdot \left(\left(\sum_{l = -2^{t - 1} + 1}^{-\left(e + 1\right)} \frac{1}{\left(l - \left(2^{t} \cdot \delta_{b_{\textit{f}}}\right)\right)^{2}}\right) + \left(\sum_{l = e + 1}^{2^{t - 1}} \frac{1}{\left(l - \left(2^{t} \cdot \delta_{b_{\textit{f}}}\right)\right)^{2}}\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 5
operand: 52
4Operationoperator: 55
operands: 7
5Literal
6ExprTuple52
7ExprTuple8, 9
8Operationoperator: 27
operands: 10
9Operationoperator: 60
operands: 11
10ExprTuple72, 12
11ExprTuple13, 14
12Literal
13Operationoperator: 16
operand: 18
14Operationoperator: 16
operand: 19
15ExprTuple18
16Literal
17ExprTuple19
18Lambdaparameter: 46
body: 20
19Lambdaparameter: 46
body: 22
20Conditionalvalue: 24
condition: 23
21ExprTuple46
22Conditionalvalue: 24
condition: 25
23Operationoperator: 29
operands: 26
24Operationoperator: 27
operands: 28
25Operationoperator: 29
operands: 30
26ExprTuple46, 31
27Literal
28ExprTuple72, 32
29Literal
30ExprTuple46, 33
31Operationoperator: 36
operands: 34
32Operationoperator: 62
operands: 35
33Operationoperator: 36
operands: 37
34ExprTuple38, 39
35ExprTuple40, 67
36Literal
37ExprTuple45, 51
38Operationoperator: 60
operands: 41
39Operationoperator: 70
operand: 45
40Operationoperator: 60
operands: 43
41ExprTuple44, 72
42ExprTuple45
43ExprTuple46, 47
44Operationoperator: 70
operand: 51
45Operationoperator: 60
operands: 49
46Variable
47Operationoperator: 70
operand: 53
48ExprTuple51
49ExprTuple52, 72
50ExprTuple53
51Operationoperator: 62
operands: 54
52Variable
53Operationoperator: 55
operands: 56
54ExprTuple67, 57
55Literal
56ExprTuple58, 59
57Operationoperator: 60
operands: 61
58Operationoperator: 62
operands: 63
59Operationoperator: 64
operand: 69
60Literal
61ExprTuple68, 66
62Literal
63ExprTuple67, 68
64Literal
65ExprTuple69
66Operationoperator: 70
operand: 72
67Literal
68Literal
69Literal
70Literal
71ExprTuple72
72Literal