logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, l
from proveit.numbers import Add, Exp, Sum, four, frac, one, two
from proveit.physics.quantum.QPE import _diff_l_scaled_delta_floor, _neg_domain, _pos_domain
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [l]
sub_expr2 = frac(one, Exp(_diff_l_scaled_delta_floor, two))
expr = ExprTuple(frac(one, four), Add(Sum(index_or_indices = sub_expr1, summand = sub_expr2, domain = _neg_domain), Sum(index_or_indices = sub_expr1, summand = sub_expr2, domain = _pos_domain)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\frac{1}{4}, \left(\sum_{l = -2^{t - 1} + 1}^{-\left(e + 1\right)} \frac{1}{\left(l - \left(2^{t} \cdot \delta_{b_{\textit{f}}}\right)\right)^{2}}\right) + \left(\sum_{l = e + 1}^{2^{t - 1}} \frac{1}{\left(l - \left(2^{t} \cdot \delta_{b_{\textit{f}}}\right)\right)^{2}}\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 20
operands: 3
2Operationoperator: 53
operands: 4
3ExprTuple65, 5
4ExprTuple6, 7
5Literal
6Operationoperator: 9
operand: 11
7Operationoperator: 9
operand: 12
8ExprTuple11
9Literal
10ExprTuple12
11Lambdaparameter: 39
body: 13
12Lambdaparameter: 39
body: 15
13Conditionalvalue: 17
condition: 16
14ExprTuple39
15Conditionalvalue: 17
condition: 18
16Operationoperator: 22
operands: 19
17Operationoperator: 20
operands: 21
18Operationoperator: 22
operands: 23
19ExprTuple39, 24
20Literal
21ExprTuple65, 25
22Literal
23ExprTuple39, 26
24Operationoperator: 29
operands: 27
25Operationoperator: 55
operands: 28
26Operationoperator: 29
operands: 30
27ExprTuple31, 32
28ExprTuple33, 60
29Literal
30ExprTuple38, 44
31Operationoperator: 53
operands: 34
32Operationoperator: 63
operand: 38
33Operationoperator: 53
operands: 36
34ExprTuple37, 65
35ExprTuple38
36ExprTuple39, 40
37Operationoperator: 63
operand: 44
38Operationoperator: 53
operands: 42
39Variable
40Operationoperator: 63
operand: 46
41ExprTuple44
42ExprTuple45, 65
43ExprTuple46
44Operationoperator: 55
operands: 47
45Variable
46Operationoperator: 48
operands: 49
47ExprTuple60, 50
48Literal
49ExprTuple51, 52
50Operationoperator: 53
operands: 54
51Operationoperator: 55
operands: 56
52Operationoperator: 57
operand: 62
53Literal
54ExprTuple61, 59
55Literal
56ExprTuple60, 61
57Literal
58ExprTuple62
59Operationoperator: 63
operand: 65
60Literal
61Literal
62Literal
63Literal
64ExprTuple65
65Literal