logo

Expression of type Mult

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import l
from proveit.numbers import Add, Exp, Mult, Sum, four, frac, one, two
from proveit.physics.quantum.QPE import _diff_l_scaled_delta_floor, _neg_domain, _pos_domain
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [l]
sub_expr2 = frac(one, Exp(_diff_l_scaled_delta_floor, two))
expr = Mult(frac(one, four), Add(Sum(index_or_indices = sub_expr1, summand = sub_expr2, domain = _neg_domain), Sum(index_or_indices = sub_expr1, summand = sub_expr2, domain = _pos_domain)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\frac{1}{4} \cdot \left(\left(\sum_{l = -2^{t - 1} + 1}^{-\left(e + 1\right)} \frac{1}{\left(l - \left(2^{t} \cdot \delta_{b_{\textit{f}}}\right)\right)^{2}}\right) + \left(\sum_{l = e + 1}^{2^{t - 1}} \frac{1}{\left(l - \left(2^{t} \cdot \delta_{b_{\textit{f}}}\right)\right)^{2}}\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 49
operands: 1
1ExprTuple2, 3
2Operationoperator: 21
operands: 4
3Operationoperator: 54
operands: 5
4ExprTuple66, 6
5ExprTuple7, 8
6Literal
7Operationoperator: 10
operand: 12
8Operationoperator: 10
operand: 13
9ExprTuple12
10Literal
11ExprTuple13
12Lambdaparameter: 40
body: 14
13Lambdaparameter: 40
body: 16
14Conditionalvalue: 18
condition: 17
15ExprTuple40
16Conditionalvalue: 18
condition: 19
17Operationoperator: 23
operands: 20
18Operationoperator: 21
operands: 22
19Operationoperator: 23
operands: 24
20ExprTuple40, 25
21Literal
22ExprTuple66, 26
23Literal
24ExprTuple40, 27
25Operationoperator: 30
operands: 28
26Operationoperator: 56
operands: 29
27Operationoperator: 30
operands: 31
28ExprTuple32, 33
29ExprTuple34, 61
30Literal
31ExprTuple39, 45
32Operationoperator: 54
operands: 35
33Operationoperator: 64
operand: 39
34Operationoperator: 54
operands: 37
35ExprTuple38, 66
36ExprTuple39
37ExprTuple40, 41
38Operationoperator: 64
operand: 45
39Operationoperator: 54
operands: 43
40Variable
41Operationoperator: 64
operand: 47
42ExprTuple45
43ExprTuple46, 66
44ExprTuple47
45Operationoperator: 56
operands: 48
46Variable
47Operationoperator: 49
operands: 50
48ExprTuple61, 51
49Literal
50ExprTuple52, 53
51Operationoperator: 54
operands: 55
52Operationoperator: 56
operands: 57
53Operationoperator: 58
operand: 63
54Literal
55ExprTuple62, 60
56Literal
57ExprTuple61, 62
58Literal
59ExprTuple63
60Operationoperator: 64
operand: 66
61Literal
62Literal
63Literal
64Literal
65ExprTuple66
66Literal