from the theory of proveit.physics.quantum.QPE¶

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
# import Expression classes needed to build the expression
from proveit import Literal, e
from proveit.numbers import Add, Exp, Interval, Neg, one, subtract, two

In [2]:
# build up the expression from sub-expressions

expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")

Passed sanity check: expr matches stored_expr

In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())

\{-2^{t - 1} + 1~\ldotp \ldotp~-\left(e + 1\right)\}

In [5]:
stored_expr.style_options()

namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()

core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 17
operands: 5
4Operationoperator: 21
operand: 8
5ExprTuple7, 23
6ExprTuple8
7Operationoperator: 21
operand: 11
8Operationoperator: 17
operands: 10
9ExprTuple11
10ExprTuple12, 23
11Operationoperator: 13
operands: 14
12Variable
13Literal
14ExprTuple15, 16
15Literal
16Operationoperator: 17
operands: 18
17Literal
18ExprTuple19, 20
19Literal
20Operationoperator: 21
operand: 23
21Literal
22ExprTuple23
23Literal