| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : , : , : |
1 | reference | 7 | ⊢ |
2 | reference | 6 | ⊢ |
3 | instantiation | 4, 108, 14, 67, 5, 68, 6 | ⊢ |
| : , : , : , : , : , : |
4 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_disassociation |
5 | instantiation | 77 | ⊢ |
| : , : |
6 | instantiation | 7, 8, 9 | ⊢ |
| : , : , : |
7 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
8 | instantiation | 10, 26, 27, 11, 12 | ⊢ |
| : , : , : , : |
9 | instantiation | 13, 14, 15 | ⊢ |
| : , : , : |
10 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_ket_in_QmultCodomain |
11 | instantiation | 25, 26, 27, 16 | ⊢ |
| : , : , : |
12 | modus ponens | 17, 18 | ⊢ |
13 | axiom | | ⊢ |
| proveit.physics.quantum.algebra.multi_qmult_def |
14 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
15 | instantiation | 77 | ⊢ |
| : , : |
16 | instantiation | 19, 26, 27, 20, 21 | ⊢ |
| : , : , : , : , : |
17 | instantiation | 22, 23, 32 | ⊢ |
| : , : , : , : , : , : |
18 | generalization | 24 | ⊢ |
19 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_op_is_op |
20 | instantiation | 25, 26, 27, 28 | ⊢ |
| : , : , : |
21 | instantiation | 29, 47, 30 | ⊢ |
| : , : , : |
22 | theorem | | ⊢ |
| proveit.linear_algebra.addition.summation_closure |
23 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
24 | instantiation | 31, 32, 33, 34 | ⊢ |
| : , : , : , : |
25 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_is_linmap |
26 | instantiation | 35, 47 | ⊢ |
| : |
27 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_set_is_hilbert_space |
28 | instantiation | 36, 105, 37 | ⊢ |
| : , : |
29 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_matrix_is_linmap |
30 | instantiation | 38, 39, 40 | ⊢ |
| : , : , : |
31 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
32 | instantiation | 41, 47 | ⊢ |
| : |
33 | instantiation | 42, 43, 44 | ⊢ |
| : , : |
34 | instantiation | 45, 105, 91 | ⊢ |
| : , : |
35 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_vec_set_is_hilbert_space |
36 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.num_bra_is_lin_map |
37 | assumption | | ⊢ |
38 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
39 | instantiation | 46, 47 | ⊢ |
| : |
40 | instantiation | 48, 105 | ⊢ |
| : |
41 | theorem | | ⊢ |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
42 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
43 | instantiation | 106, 81, 49 | ⊢ |
| : , : , : |
44 | instantiation | 58, 50, 51 | ⊢ |
| : , : , : |
45 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.num_ket_in_register_space |
46 | theorem | | ⊢ |
| proveit.linear_algebra.matrices.unitaries_are_matrices |
47 | instantiation | 52, 103, 100 | ⊢ |
| : , : |
48 | theorem | | ⊢ |
| proveit.physics.quantum.QFT.invFT_is_unitary |
49 | instantiation | 106, 86, 53 | ⊢ |
| : , : , : |
50 | instantiation | 74, 61, 54 | ⊢ |
| : , : |
51 | instantiation | 55, 56, 57 | ⊢ |
| : , : , : |
52 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_natpos_closure |
53 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
54 | instantiation | 58, 59, 60 | ⊢ |
| : , : , : |
55 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
56 | instantiation | 66, 108, 62, 67, 64, 68, 61, 75, 76, 70 | ⊢ |
| : , : , : , : , : , : |
57 | instantiation | 66, 67, 103, 62, 68, 63, 64, 71, 72, 75, 76, 70 | ⊢ |
| : , : , : , : , : , : |
58 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
59 | instantiation | 74, 65, 70 | ⊢ |
| : , : |
60 | instantiation | 66, 67, 103, 108, 68, 69, 75, 76, 70 | ⊢ |
| : , : , : , : , : , : |
61 | instantiation | 74, 71, 72 | ⊢ |
| : , : |
62 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
63 | instantiation | 77 | ⊢ |
| : , : |
64 | instantiation | 73 | ⊢ |
| : , : , : |
65 | instantiation | 74, 75, 76 | ⊢ |
| : , : |
66 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
67 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
68 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
69 | instantiation | 77 | ⊢ |
| : , : |
70 | instantiation | 106, 81, 78 | ⊢ |
| : , : , : |
71 | instantiation | 106, 81, 79 | ⊢ |
| : , : , : |
72 | instantiation | 106, 81, 80 | ⊢ |
| : , : , : |
73 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
74 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
75 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
76 | instantiation | 106, 81, 82 | ⊢ |
| : , : , : |
77 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
78 | instantiation | 106, 84, 83 | ⊢ |
| : , : , : |
79 | instantiation | 106, 84, 85 | ⊢ |
| : , : , : |
80 | instantiation | 106, 86, 87 | ⊢ |
| : , : , : |
81 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
82 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._phase_is_real |
83 | instantiation | 106, 89, 88 | ⊢ |
| : , : , : |
84 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
85 | instantiation | 106, 89, 99 | ⊢ |
| : , : , : |
86 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
87 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
88 | instantiation | 106, 90, 91 | ⊢ |
| : , : , : |
89 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
90 | instantiation | 92, 93, 94 | ⊢ |
| : , : |
91 | assumption | | ⊢ |
92 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
93 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.zero_is_int |
94 | instantiation | 95, 96, 97 | ⊢ |
| : , : |
95 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
96 | instantiation | 98, 99, 100 | ⊢ |
| : , : |
97 | instantiation | 101, 102 | ⊢ |
| : |
98 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_int_closure |
99 | instantiation | 106, 107, 103 | ⊢ |
| : , : , : |
100 | instantiation | 106, 104, 105 | ⊢ |
| : , : , : |
101 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
102 | instantiation | 106, 107, 108 | ⊢ |
| : , : , : |
103 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
104 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
105 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
106 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
107 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
108 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |