| step type | requirements | statement |
0 | modus ponens | 1, 2 | ⊢ |
1 | instantiation | 3, 4, 7 | ⊢ |
| : , : , : , : , : , : |
2 | generalization | 5 | ⊢ |
3 | theorem | | ⊢ |
| proveit.linear_algebra.addition.summation_closure |
4 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
5 | instantiation | 6, 7, 8, 9 | ⊢ |
| : , : , : , : |
6 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
7 | instantiation | 10, 11 | ⊢ |
| : |
8 | instantiation | 12, 13, 14 | ⊢ |
| : , : |
9 | instantiation | 15, 72, 58 | ⊢ |
| : , : |
10 | theorem | | ⊢ |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
11 | instantiation | 16, 70, 67 | ⊢ |
| : , : |
12 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
13 | instantiation | 73, 48, 17 | ⊢ |
| : , : , : |
14 | instantiation | 25, 18, 19 | ⊢ |
| : , : , : |
15 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.num_ket_in_register_space |
16 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_natpos_closure |
17 | instantiation | 73, 53, 20 | ⊢ |
| : , : , : |
18 | instantiation | 41, 28, 21 | ⊢ |
| : , : |
19 | instantiation | 22, 23, 24 | ⊢ |
| : , : , : |
20 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
21 | instantiation | 25, 26, 27 | ⊢ |
| : , : , : |
22 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
23 | instantiation | 33, 75, 29, 34, 31, 35, 28, 42, 43, 37 | ⊢ |
| : , : , : , : , : , : |
24 | instantiation | 33, 34, 70, 29, 35, 30, 31, 38, 39, 42, 43, 37 | ⊢ |
| : , : , : , : , : , : |
25 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
26 | instantiation | 41, 32, 37 | ⊢ |
| : , : |
27 | instantiation | 33, 34, 70, 75, 35, 36, 42, 43, 37 | ⊢ |
| : , : , : , : , : , : |
28 | instantiation | 41, 38, 39 | ⊢ |
| : , : |
29 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
30 | instantiation | 44 | ⊢ |
| : , : |
31 | instantiation | 40 | ⊢ |
| : , : , : |
32 | instantiation | 41, 42, 43 | ⊢ |
| : , : |
33 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
34 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
35 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
36 | instantiation | 44 | ⊢ |
| : , : |
37 | instantiation | 73, 48, 45 | ⊢ |
| : , : , : |
38 | instantiation | 73, 48, 46 | ⊢ |
| : , : , : |
39 | instantiation | 73, 48, 47 | ⊢ |
| : , : , : |
40 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
41 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
42 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
43 | instantiation | 73, 48, 49 | ⊢ |
| : , : , : |
44 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
45 | instantiation | 73, 51, 50 | ⊢ |
| : , : , : |
46 | instantiation | 73, 51, 52 | ⊢ |
| : , : , : |
47 | instantiation | 73, 53, 54 | ⊢ |
| : , : , : |
48 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
49 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._phase_is_real |
50 | instantiation | 73, 56, 55 | ⊢ |
| : , : , : |
51 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
52 | instantiation | 73, 56, 66 | ⊢ |
| : , : , : |
53 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
54 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
55 | instantiation | 73, 57, 58 | ⊢ |
| : , : , : |
56 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
57 | instantiation | 59, 60, 61 | ⊢ |
| : , : |
58 | assumption | | ⊢ |
59 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
60 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.zero_is_int |
61 | instantiation | 62, 63, 64 | ⊢ |
| : , : |
62 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
63 | instantiation | 65, 66, 67 | ⊢ |
| : , : |
64 | instantiation | 68, 69 | ⊢ |
| : |
65 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_int_closure |
66 | instantiation | 73, 74, 70 | ⊢ |
| : , : , : |
67 | instantiation | 73, 71, 72 | ⊢ |
| : , : , : |
68 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
69 | instantiation | 73, 74, 75 | ⊢ |
| : , : , : |
70 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
71 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
72 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
73 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
74 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
75 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |