| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5 | ⊢ |
| : , : , : , : |
1 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_ket_is_ket |
2 | reference | 16 | ⊢ |
3 | reference | 17 | ⊢ |
4 | instantiation | 15, 16, 17, 6 | ⊢ |
| : , : , : |
5 | modus ponens | 7, 8 | ⊢ |
6 | instantiation | 9, 16, 17, 10, 11 | ⊢ |
| : , : , : , : , : |
7 | instantiation | 12, 13, 22 | ⊢ |
| : , : , : , : , : , : |
8 | generalization | 14 | ⊢ |
9 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_op_is_op |
10 | instantiation | 15, 16, 17, 18 | ⊢ |
| : , : , : |
11 | instantiation | 19, 37, 20 | ⊢ |
| : , : , : |
12 | theorem | | ⊢ |
| proveit.linear_algebra.addition.summation_closure |
13 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
14 | instantiation | 21, 22, 23, 24 | ⊢ |
| : , : , : , : |
15 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_is_linmap |
16 | instantiation | 25, 37 | ⊢ |
| : |
17 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_set_is_hilbert_space |
18 | instantiation | 26, 95, 27 | ⊢ |
| : , : |
19 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_matrix_is_linmap |
20 | instantiation | 28, 29, 30 | ⊢ |
| : , : , : |
21 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
22 | instantiation | 31, 37 | ⊢ |
| : |
23 | instantiation | 32, 33, 34 | ⊢ |
| : , : |
24 | instantiation | 35, 95, 81 | ⊢ |
| : , : |
25 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_vec_set_is_hilbert_space |
26 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.num_bra_is_lin_map |
27 | assumption | | ⊢ |
28 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
29 | instantiation | 36, 37 | ⊢ |
| : |
30 | instantiation | 38, 95 | ⊢ |
| : |
31 | theorem | | ⊢ |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
32 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
33 | instantiation | 96, 71, 39 | ⊢ |
| : , : , : |
34 | instantiation | 48, 40, 41 | ⊢ |
| : , : , : |
35 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.num_ket_in_register_space |
36 | theorem | | ⊢ |
| proveit.linear_algebra.matrices.unitaries_are_matrices |
37 | instantiation | 42, 93, 90 | ⊢ |
| : , : |
38 | theorem | | ⊢ |
| proveit.physics.quantum.QFT.invFT_is_unitary |
39 | instantiation | 96, 76, 43 | ⊢ |
| : , : , : |
40 | instantiation | 64, 51, 44 | ⊢ |
| : , : |
41 | instantiation | 45, 46, 47 | ⊢ |
| : , : , : |
42 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_natpos_closure |
43 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
44 | instantiation | 48, 49, 50 | ⊢ |
| : , : , : |
45 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
46 | instantiation | 56, 98, 52, 57, 54, 58, 51, 65, 66, 60 | ⊢ |
| : , : , : , : , : , : |
47 | instantiation | 56, 57, 93, 52, 58, 53, 54, 61, 62, 65, 66, 60 | ⊢ |
| : , : , : , : , : , : |
48 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
49 | instantiation | 64, 55, 60 | ⊢ |
| : , : |
50 | instantiation | 56, 57, 93, 98, 58, 59, 65, 66, 60 | ⊢ |
| : , : , : , : , : , : |
51 | instantiation | 64, 61, 62 | ⊢ |
| : , : |
52 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
53 | instantiation | 67 | ⊢ |
| : , : |
54 | instantiation | 63 | ⊢ |
| : , : , : |
55 | instantiation | 64, 65, 66 | ⊢ |
| : , : |
56 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
57 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
58 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
59 | instantiation | 67 | ⊢ |
| : , : |
60 | instantiation | 96, 71, 68 | ⊢ |
| : , : , : |
61 | instantiation | 96, 71, 69 | ⊢ |
| : , : , : |
62 | instantiation | 96, 71, 70 | ⊢ |
| : , : , : |
63 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
64 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
65 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
66 | instantiation | 96, 71, 72 | ⊢ |
| : , : , : |
67 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
68 | instantiation | 96, 74, 73 | ⊢ |
| : , : , : |
69 | instantiation | 96, 74, 75 | ⊢ |
| : , : , : |
70 | instantiation | 96, 76, 77 | ⊢ |
| : , : , : |
71 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
72 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._phase_is_real |
73 | instantiation | 96, 79, 78 | ⊢ |
| : , : , : |
74 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
75 | instantiation | 96, 79, 89 | ⊢ |
| : , : , : |
76 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
77 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
78 | instantiation | 96, 80, 81 | ⊢ |
| : , : , : |
79 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
80 | instantiation | 82, 83, 84 | ⊢ |
| : , : |
81 | assumption | | ⊢ |
82 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
83 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.zero_is_int |
84 | instantiation | 85, 86, 87 | ⊢ |
| : , : |
85 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
86 | instantiation | 88, 89, 90 | ⊢ |
| : , : |
87 | instantiation | 91, 92 | ⊢ |
| : |
88 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_int_closure |
89 | instantiation | 96, 97, 93 | ⊢ |
| : , : , : |
90 | instantiation | 96, 94, 95 | ⊢ |
| : , : , : |
91 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
92 | instantiation | 96, 97, 98 | ⊢ |
| : , : , : |
93 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
94 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
95 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
96 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
97 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |