logo

Expression of type Equals

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, k, m
from proveit.logic import Equals, InSet
from proveit.numbers import Exp, Mult, Neg, e, frac, i, pi, two
from proveit.physics.quantum.QPE import _m_domain, _phase, _two_pow_t
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Exp(e, Mult(two, pi, i, _phase, k))
sub_expr2 = Exp(e, Neg(frac(Mult(two, pi, i, k, m), _two_pow_t)))
sub_expr3 = InSet(k, _m_domain)
expr = Equals(Lambda(k, Conditional(Mult(sub_expr1, sub_expr2), sub_expr3)), Lambda(k, Conditional(Mult(sub_expr2, sub_expr1), sub_expr3))).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left[k \mapsto \left\{\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \varphi \cdot k} \cdot \mathsf{e}^{-\frac{2 \cdot \pi \cdot \mathsf{i} \cdot k \cdot m}{2^{t}}} \textrm{ if } k \in \{0~\ldotp \ldotp~2^{t} - 1\}\right..\right] =  \\ \left[k \mapsto \left\{\mathsf{e}^{-\frac{2 \cdot \pi \cdot \mathsf{i} \cdot k \cdot m}{2^{t}}} \cdot \mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \varphi \cdot k} \textrm{ if } k \in \{0~\ldotp \ldotp~2^{t} - 1\}\right..\right] \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Lambdaparameter: 47
body: 5
4Lambdaparameter: 47
body: 7
5Conditionalvalue: 8
condition: 10
6ExprTuple47
7Conditionalvalue: 9
condition: 10
8Operationoperator: 41
operands: 11
9Operationoperator: 41
operands: 12
10Operationoperator: 13
operands: 14
11ExprTuple16, 15
12ExprTuple15, 16
13Literal
14ExprTuple47, 17
15Operationoperator: 43
operands: 18
16Operationoperator: 43
operands: 19
17Operationoperator: 20
operands: 21
18ExprTuple23, 22
19ExprTuple23, 24
20Literal
21ExprTuple25, 26
22Operationoperator: 36
operand: 31
23Literal
24Operationoperator: 41
operands: 28
25Literal
26Operationoperator: 29
operands: 30
27ExprTuple31
28ExprTuple49, 45, 46, 32, 47
29Literal
30ExprTuple39, 33
31Operationoperator: 34
operands: 35
32Literal
33Operationoperator: 36
operand: 40
34Literal
35ExprTuple38, 39
36Literal
37ExprTuple40
38Operationoperator: 41
operands: 42
39Operationoperator: 43
operands: 44
40Literal
41Literal
42ExprTuple49, 45, 46, 47, 48
43Literal
44ExprTuple49, 50
45Literal
46Literal
47Variable
48Variable
49Literal
50Literal