| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : , : , : |
1 | reference | 56 | ⊢ |
2 | instantiation | 4, 44, 45, 5, 6 | ⊢ |
| : , : , : , : |
3 | instantiation | 19, 7, 8 | ⊢ |
| : , : , : |
4 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_ket_in_QmultCodomain |
5 | instantiation | 43, 44, 45, 9 | ⊢ |
| : , : , : |
6 | modus ponens | 10, 11 | ⊢ |
7 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
8 | instantiation | 83 | ⊢ |
| : , : , : |
9 | instantiation | 56, 12, 13 | ⊢ |
| : , : , : |
10 | instantiation | 14, 153, 22 | ⊢ |
| : , : , : , : , : , : |
11 | generalization | 15 | ⊢ |
12 | instantiation | 16, 44, 45, 17, 18 | ⊢ |
| : , : , : , : , : |
13 | instantiation | 19, 155, 20 | ⊢ |
| : , : , : |
14 | theorem | | ⊢ |
| proveit.linear_algebra.addition.summation_closure |
15 | instantiation | 21, 22, 23, 24 | ⊢ |
| : , : , : , : |
16 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_op_is_op |
17 | instantiation | 43, 44, 45, 25 | ⊢ |
| : , : , : |
18 | instantiation | 26, 60, 27 | ⊢ |
| : , : , : |
19 | axiom | | ⊢ |
| proveit.physics.quantum.algebra.multi_qmult_def |
20 | instantiation | 92 | ⊢ |
| : , : |
21 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
22 | instantiation | 28, 60 | ⊢ |
| : |
23 | instantiation | 54, 29, 30 | ⊢ |
| : , : |
24 | instantiation | 31, 157, 117 | ⊢ |
| : , : |
25 | instantiation | 32, 33, 44, 45, 34 | ⊢ |
| : , : , : , : |
26 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_matrix_is_linmap |
27 | instantiation | 122, 35, 36 | ⊢ |
| : , : , : |
28 | theorem | | ⊢ |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
29 | instantiation | 159, 130, 37 | ⊢ |
| : , : , : |
30 | instantiation | 63, 38, 39 | ⊢ |
| : , : , : |
31 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.num_ket_in_register_space |
32 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_complex_closure |
33 | instantiation | 71, 40, 41, 42 | ⊢ |
| : , : |
34 | instantiation | 43, 44, 45, 46 | ⊢ |
| : , : , : |
35 | instantiation | 47, 60 | ⊢ |
| : |
36 | instantiation | 48, 157 | ⊢ |
| : |
37 | instantiation | 159, 103, 49 | ⊢ |
| : , : , : |
38 | instantiation | 89, 66, 50 | ⊢ |
| : , : |
39 | instantiation | 98, 51, 52 | ⊢ |
| : , : , : |
40 | instantiation | 159, 130, 53 | ⊢ |
| : , : , : |
41 | instantiation | 54, 121, 55 | ⊢ |
| : , : |
42 | instantiation | 56, 57, 58 | ⊢ |
| : , : , : |
43 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_is_linmap |
44 | instantiation | 59, 60 | ⊢ |
| : |
45 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_set_is_hilbert_space |
46 | instantiation | 61, 157, 62 | ⊢ |
| : , : |
47 | theorem | | ⊢ |
| proveit.linear_algebra.matrices.unitaries_are_matrices |
48 | theorem | | ⊢ |
| proveit.physics.quantum.QFT.invFT_is_unitary |
49 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
50 | instantiation | 63, 64, 65 | ⊢ |
| : , : , : |
51 | instantiation | 77, 158, 67, 78, 69, 79, 66, 90, 91, 81 | ⊢ |
| : , : , : , : , : , : |
52 | instantiation | 77, 78, 161, 67, 79, 68, 69, 121, 82, 90, 91, 81 | ⊢ |
| : , : , : , : , : , : |
53 | instantiation | 159, 141, 70 | ⊢ |
| : , : , : |
54 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
55 | instantiation | 71, 108, 121, 87 | ⊢ |
| : , : |
56 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
57 | instantiation | 72, 129, 73 | ⊢ |
| : , : |
58 | instantiation | 105, 74 | ⊢ |
| : , : , : |
59 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_vec_set_is_hilbert_space |
60 | instantiation | 75, 161, 147 | ⊢ |
| : , : |
61 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.num_bra_is_lin_map |
62 | assumption | | ⊢ |
63 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
64 | instantiation | 89, 76, 81 | ⊢ |
| : , : |
65 | instantiation | 77, 78, 161, 158, 79, 80, 90, 91, 81 | ⊢ |
| : , : , : , : , : , : |
66 | instantiation | 89, 121, 82 | ⊢ |
| : , : |
67 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
68 | instantiation | 92 | ⊢ |
| : , : |
69 | instantiation | 83 | ⊢ |
| : , : , : |
70 | instantiation | 159, 151, 149 | ⊢ |
| : , : , : |
71 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
72 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_rational_non_zero__not_zero |
73 | instantiation | 159, 84, 85 | ⊢ |
| : , : , : |
74 | instantiation | 86, 108, 121, 87, 88* | ⊢ |
| : , : |
75 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_natpos_closure |
76 | instantiation | 89, 90, 91 | ⊢ |
| : , : |
77 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
78 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
79 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
80 | instantiation | 92 | ⊢ |
| : , : |
81 | instantiation | 159, 130, 93 | ⊢ |
| : , : , : |
82 | instantiation | 159, 130, 94 | ⊢ |
| : , : , : |
83 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
84 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational_nonzero |
85 | instantiation | 95, 135, 96 | ⊢ |
| : , : |
86 | theorem | | ⊢ |
| proveit.numbers.division.div_as_mult |
87 | instantiation | 97, 155 | ⊢ |
| : |
88 | instantiation | 98, 99, 100 | ⊢ |
| : , : , : |
89 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
90 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
91 | instantiation | 159, 130, 101 | ⊢ |
| : , : , : |
92 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
93 | instantiation | 159, 141, 102 | ⊢ |
| : , : , : |
94 | instantiation | 159, 103, 104 | ⊢ |
| : , : , : |
95 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_rational_pos_closure_bin |
96 | instantiation | 159, 154, 157 | ⊢ |
| : , : , : |
97 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
98 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
99 | instantiation | 105, 106 | ⊢ |
| : , : , : |
100 | instantiation | 107, 108, 109 | ⊢ |
| : , : |
101 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._phase_is_real |
102 | instantiation | 159, 151, 110 | ⊢ |
| : , : , : |
103 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
104 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
105 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
106 | instantiation | 111, 112, 153, 113* | ⊢ |
| : , : |
107 | theorem | | ⊢ |
| proveit.numbers.multiplication.commutation |
108 | instantiation | 159, 130, 114 | ⊢ |
| : , : , : |
109 | instantiation | 159, 130, 115 | ⊢ |
| : , : , : |
110 | instantiation | 159, 116, 117 | ⊢ |
| : , : , : |
111 | theorem | | ⊢ |
| proveit.numbers.exponentiation.neg_power_as_div |
112 | instantiation | 159, 118, 119 | ⊢ |
| : , : , : |
113 | instantiation | 120, 121 | ⊢ |
| : |
114 | instantiation | 122, 123, 157 | ⊢ |
| : , : , : |
115 | instantiation | 159, 141, 124 | ⊢ |
| : , : , : |
116 | instantiation | 125, 126, 127 | ⊢ |
| : , : |
117 | assumption | | ⊢ |
118 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
119 | instantiation | 159, 128, 129 | ⊢ |
| : , : , : |
120 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
121 | instantiation | 159, 130, 131 | ⊢ |
| : , : , : |
122 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
123 | instantiation | 132, 133 | ⊢ |
| : , : |
124 | instantiation | 159, 134, 135 | ⊢ |
| : , : , : |
125 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
126 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.zero_is_int |
127 | instantiation | 136, 137, 138 | ⊢ |
| : , : |
128 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
129 | instantiation | 159, 139, 140 | ⊢ |
| : , : , : |
130 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
131 | instantiation | 159, 141, 142 | ⊢ |
| : , : , : |
132 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
133 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
134 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
135 | instantiation | 143, 144, 145 | ⊢ |
| : , : |
136 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
137 | instantiation | 146, 152, 147 | ⊢ |
| : , : |
138 | instantiation | 148, 149 | ⊢ |
| : |
139 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
140 | instantiation | 159, 150, 155 | ⊢ |
| : , : , : |
141 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
142 | instantiation | 159, 151, 152 | ⊢ |
| : , : , : |
143 | theorem | | ⊢ |
| proveit.numbers.division.div_rational_pos_closure |
144 | instantiation | 159, 154, 153 | ⊢ |
| : , : , : |
145 | instantiation | 159, 154, 155 | ⊢ |
| : , : , : |
146 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_int_closure |
147 | instantiation | 159, 156, 157 | ⊢ |
| : , : , : |
148 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
149 | instantiation | 159, 160, 158 | ⊢ |
| : , : , : |
150 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
151 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
152 | instantiation | 159, 160, 161 | ⊢ |
| : , : , : |
153 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
154 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
155 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
156 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
157 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
158 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
159 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
160 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
161 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |