| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5 | ⊢ |
| : , : , : , : |
1 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_ket_in_QmultCodomain |
2 | reference | 41 | ⊢ |
3 | reference | 42 | ⊢ |
4 | instantiation | 40, 41, 42, 6 | ⊢ |
| : , : , : |
5 | modus ponens | 7, 8 | ⊢ |
6 | instantiation | 53, 9, 10 | ⊢ |
| : , : , : |
7 | instantiation | 11, 150, 19 | ⊢ |
| : , : , : , : , : , : |
8 | generalization | 12 | ⊢ |
9 | instantiation | 13, 41, 42, 14, 15 | ⊢ |
| : , : , : , : , : |
10 | instantiation | 16, 152, 17 | ⊢ |
| : , : , : |
11 | theorem | | ⊢ |
| proveit.linear_algebra.addition.summation_closure |
12 | instantiation | 18, 19, 20, 21 | ⊢ |
| : , : , : , : |
13 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_op_is_op |
14 | instantiation | 40, 41, 42, 22 | ⊢ |
| : , : , : |
15 | instantiation | 23, 57, 24 | ⊢ |
| : , : , : |
16 | axiom | | ⊢ |
| proveit.physics.quantum.algebra.multi_qmult_def |
17 | instantiation | 89 | ⊢ |
| : , : |
18 | theorem | | ⊢ |
| proveit.linear_algebra.scalar_multiplication.scalar_mult_closure |
19 | instantiation | 25, 57 | ⊢ |
| : |
20 | instantiation | 51, 26, 27 | ⊢ |
| : , : |
21 | instantiation | 28, 154, 114 | ⊢ |
| : , : |
22 | instantiation | 29, 30, 41, 42, 31 | ⊢ |
| : , : , : , : |
23 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_matrix_is_linmap |
24 | instantiation | 119, 32, 33 | ⊢ |
| : , : , : |
25 | theorem | | ⊢ |
| proveit.linear_algebra.complex_vec_set_is_vec_space |
26 | instantiation | 156, 127, 34 | ⊢ |
| : , : , : |
27 | instantiation | 60, 35, 36 | ⊢ |
| : , : , : |
28 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.num_ket_in_register_space |
29 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_complex_closure |
30 | instantiation | 68, 37, 38, 39 | ⊢ |
| : , : |
31 | instantiation | 40, 41, 42, 43 | ⊢ |
| : , : , : |
32 | instantiation | 44, 57 | ⊢ |
| : |
33 | instantiation | 45, 154 | ⊢ |
| : |
34 | instantiation | 156, 100, 46 | ⊢ |
| : , : , : |
35 | instantiation | 86, 63, 47 | ⊢ |
| : , : |
36 | instantiation | 95, 48, 49 | ⊢ |
| : , : , : |
37 | instantiation | 156, 127, 50 | ⊢ |
| : , : , : |
38 | instantiation | 51, 118, 52 | ⊢ |
| : , : |
39 | instantiation | 53, 54, 55 | ⊢ |
| : , : , : |
40 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.qmult_op_is_linmap |
41 | instantiation | 56, 57 | ⊢ |
| : |
42 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_set_is_hilbert_space |
43 | instantiation | 58, 154, 59 | ⊢ |
| : , : |
44 | theorem | | ⊢ |
| proveit.linear_algebra.matrices.unitaries_are_matrices |
45 | theorem | | ⊢ |
| proveit.physics.quantum.QFT.invFT_is_unitary |
46 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
47 | instantiation | 60, 61, 62 | ⊢ |
| : , : , : |
48 | instantiation | 74, 155, 64, 75, 66, 76, 63, 87, 88, 78 | ⊢ |
| : , : , : , : , : , : |
49 | instantiation | 74, 75, 158, 64, 76, 65, 66, 118, 79, 87, 88, 78 | ⊢ |
| : , : , : , : , : , : |
50 | instantiation | 156, 138, 67 | ⊢ |
| : , : , : |
51 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
52 | instantiation | 68, 105, 118, 84 | ⊢ |
| : , : |
53 | theorem | | ⊢ |
| proveit.logic.equality.sub_left_side_into |
54 | instantiation | 69, 126, 70 | ⊢ |
| : , : |
55 | instantiation | 102, 71 | ⊢ |
| : , : , : |
56 | theorem | | ⊢ |
| proveit.linear_algebra.inner_products.complex_vec_set_is_hilbert_space |
57 | instantiation | 72, 158, 144 | ⊢ |
| : , : |
58 | theorem | | ⊢ |
| proveit.physics.quantum.algebra.num_bra_is_lin_map |
59 | assumption | | ⊢ |
60 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
61 | instantiation | 86, 73, 78 | ⊢ |
| : , : |
62 | instantiation | 74, 75, 158, 155, 76, 77, 87, 88, 78 | ⊢ |
| : , : , : , : , : , : |
63 | instantiation | 86, 118, 79 | ⊢ |
| : , : |
64 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
65 | instantiation | 89 | ⊢ |
| : , : |
66 | instantiation | 80 | ⊢ |
| : , : , : |
67 | instantiation | 156, 148, 146 | ⊢ |
| : , : , : |
68 | theorem | | ⊢ |
| proveit.numbers.division.div_complex_closure |
69 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_rational_non_zero__not_zero |
70 | instantiation | 156, 81, 82 | ⊢ |
| : , : , : |
71 | instantiation | 83, 105, 118, 84, 85* | ⊢ |
| : , : |
72 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_natpos_closure |
73 | instantiation | 86, 87, 88 | ⊢ |
| : , : |
74 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
75 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
76 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
77 | instantiation | 89 | ⊢ |
| : , : |
78 | instantiation | 156, 127, 90 | ⊢ |
| : , : , : |
79 | instantiation | 156, 127, 91 | ⊢ |
| : , : , : |
80 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
81 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational_nonzero |
82 | instantiation | 92, 132, 93 | ⊢ |
| : , : |
83 | theorem | | ⊢ |
| proveit.numbers.division.div_as_mult |
84 | instantiation | 94, 152 | ⊢ |
| : |
85 | instantiation | 95, 96, 97 | ⊢ |
| : , : , : |
86 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
87 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
88 | instantiation | 156, 127, 98 | ⊢ |
| : , : , : |
89 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
90 | instantiation | 156, 138, 99 | ⊢ |
| : , : , : |
91 | instantiation | 156, 100, 101 | ⊢ |
| : , : , : |
92 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_rational_pos_closure_bin |
93 | instantiation | 156, 151, 154 | ⊢ |
| : , : , : |
94 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
95 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
96 | instantiation | 102, 103 | ⊢ |
| : , : , : |
97 | instantiation | 104, 105, 106 | ⊢ |
| : , : |
98 | theorem | | ⊢ |
| proveit.physics.quantum.QPE._phase_is_real |
99 | instantiation | 156, 148, 107 | ⊢ |
| : , : , : |
100 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
101 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
102 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
103 | instantiation | 108, 109, 150, 110* | ⊢ |
| : , : |
104 | theorem | | ⊢ |
| proveit.numbers.multiplication.commutation |
105 | instantiation | 156, 127, 111 | ⊢ |
| : , : , : |
106 | instantiation | 156, 127, 112 | ⊢ |
| : , : , : |
107 | instantiation | 156, 113, 114 | ⊢ |
| : , : , : |
108 | theorem | | ⊢ |
| proveit.numbers.exponentiation.neg_power_as_div |
109 | instantiation | 156, 115, 116 | ⊢ |
| : , : , : |
110 | instantiation | 117, 118 | ⊢ |
| : |
111 | instantiation | 119, 120, 154 | ⊢ |
| : , : , : |
112 | instantiation | 156, 138, 121 | ⊢ |
| : , : , : |
113 | instantiation | 122, 123, 124 | ⊢ |
| : , : |
114 | assumption | | ⊢ |
115 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
116 | instantiation | 156, 125, 126 | ⊢ |
| : , : , : |
117 | theorem | | ⊢ |
| proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
118 | instantiation | 156, 127, 128 | ⊢ |
| : , : , : |
119 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.unfold_subset_eq |
120 | instantiation | 129, 130 | ⊢ |
| : , : |
121 | instantiation | 156, 131, 132 | ⊢ |
| : , : , : |
122 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.int_interval_within_int |
123 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.zero_is_int |
124 | instantiation | 133, 134, 135 | ⊢ |
| : , : |
125 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
126 | instantiation | 156, 136, 137 | ⊢ |
| : , : , : |
127 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
128 | instantiation | 156, 138, 139 | ⊢ |
| : , : , : |
129 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.relax_proper_subset |
130 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nat_pos_within_real |
131 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
132 | instantiation | 140, 141, 142 | ⊢ |
| : , : |
133 | theorem | | ⊢ |
| proveit.numbers.addition.add_int_closure_bin |
134 | instantiation | 143, 149, 144 | ⊢ |
| : , : |
135 | instantiation | 145, 146 | ⊢ |
| : |
136 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
137 | instantiation | 156, 147, 152 | ⊢ |
| : , : , : |
138 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
139 | instantiation | 156, 148, 149 | ⊢ |
| : , : , : |
140 | theorem | | ⊢ |
| proveit.numbers.division.div_rational_pos_closure |
141 | instantiation | 156, 151, 150 | ⊢ |
| : , : , : |
142 | instantiation | 156, 151, 152 | ⊢ |
| : , : , : |
143 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_int_closure |
144 | instantiation | 156, 153, 154 | ⊢ |
| : , : , : |
145 | theorem | | ⊢ |
| proveit.numbers.negation.int_closure |
146 | instantiation | 156, 157, 155 | ⊢ |
| : , : , : |
147 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
148 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
149 | instantiation | 156, 157, 158 | ⊢ |
| : , : , : |
150 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
151 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
152 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
153 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nat_pos_within_nat |
154 | axiom | | ⊢ |
| proveit.physics.quantum.QPE._t_in_natural_pos |
155 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
156 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
157 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
158 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
*equality replacement requirements |