logo

Expression of type Equals

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Variable
from proveit.core_expr_types import Len
from proveit.linear_algebra import TensorProd
from proveit.logic import Equals
from proveit.numbers import Add, Interval, one, three
from proveit.physics.quantum import I
from proveit.physics.quantum.QFT import InverseFourierTransform
from proveit.physics.quantum.QPE import _Psi_ket, _ket_u, _psi__t_ket, _s, _t
from proveit.physics.quantum.circuits import Gate, Input, MultiQubitElem, Output
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Variable("_b", latex_format = r"{_{-}b}")
sub_expr3 = Add(_t, _s)
sub_expr4 = Add(_t, one)
sub_expr5 = Interval(one, _t)
sub_expr6 = MultiQubitElem(element = Input(state = TensorProd(_psi__t_ket, _ket_u), part = sub_expr1), targets = Interval(one, sub_expr3))
expr = Equals(Len(operands = [ExprRange(sub_expr1, sub_expr6, one, _t).with_wrapping_at(2,6), ExprRange(sub_expr1, sub_expr6, sub_expr4, sub_expr3).with_wrapping_at(2,6), ExprRange(sub_expr1, MultiQubitElem(element = Gate(operation = InverseFourierTransform(_t), part = sub_expr1), targets = sub_expr5), one, _t), ExprRange(sub_expr1, Gate(operation = I).with_implicit_representation(), one, _s), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _Psi_ket, part = sub_expr1), targets = sub_expr5), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _ket_u, part = sub_expr1), targets = Interval(sub_expr4, sub_expr3)), one, _s)]), Len(operands = [ExprRange(sub_expr2, ExprRange(sub_expr1, [sub_expr2, sub_expr1], one, sub_expr3), one, three)]))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
|\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + 1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + 2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + s~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, ..\left(s - 3\right) \times.., \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~1~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~2~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~s~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}\right)| = |\left(\left(1, 1\right), \left(1, 2\right), \ldots, \left(1, t + s\right), \left(2, 1\right), \left(2, 2\right), \ldots, \left(2, t + s\right), \ldots\ldots, \left(3, 1\right), \left(3, 2\right), \ldots, \left(3, t + s\right)\right)|
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 9, 10, 11, 12, 13
6Literal
7ExprTuple14
8ExprRangelambda_map: 15
start_index: 72
end_index: 76
9ExprRangelambda_map: 15
start_index: 62
end_index: 63
10ExprRangelambda_map: 16
start_index: 72
end_index: 76
11ExprRangelambda_map: 17
start_index: 72
end_index: 73
12ExprRangelambda_map: 18
start_index: 72
end_index: 76
13ExprRangelambda_map: 19
start_index: 72
end_index: 73
14ExprRangelambda_map: 20
start_index: 72
end_index: 21
15Lambdaparameter: 61
body: 22
16Lambdaparameter: 61
body: 23
17Lambdaparameter: 61
body: 24
18Lambdaparameter: 61
body: 25
19Lambdaparameter: 61
body: 26
20Lambdaparameter: 57
body: 28
21Literal
22Operationoperator: 33
operands: 29
23Operationoperator: 33
operands: 30
24Operationoperator: 49
operands: 31
25Operationoperator: 33
operands: 32
26Operationoperator: 33
operands: 34
27ExprTuple57
28ExprRangelambda_map: 35
start_index: 72
end_index: 63
29NamedExprselement: 36
targets: 37
30NamedExprselement: 38
targets: 41
31NamedExprsoperation: 39
32NamedExprselement: 40
targets: 41
33Literal
34NamedExprselement: 42
targets: 43
35Lambdaparameter: 61
body: 45
36Operationoperator: 46
operands: 47
37Operationoperator: 55
operands: 48
38Operationoperator: 49
operands: 50
39Literal
40Operationoperator: 53
operands: 51
41Operationoperator: 55
operands: 52
42Operationoperator: 53
operands: 54
43Operationoperator: 55
operands: 56
44ExprTuple61
45ExprTuple57, 61
46Literal
47NamedExprsstate: 58
part: 61
48ExprTuple72, 63
49Literal
50NamedExprsoperation: 59
part: 61
51NamedExprsstate: 60
part: 61
52ExprTuple72, 76
53Literal
54NamedExprsstate: 71
part: 61
55Literal
56ExprTuple62, 63
57Variable
58Operationoperator: 64
operands: 65
59Operationoperator: 66
operand: 76
60Literal
61Variable
62Operationoperator: 68
operands: 67
63Operationoperator: 68
operands: 69
64Literal
65ExprTuple70, 71
66Literal
67ExprTuple76, 72
68Literal
69ExprTuple76, 73
70Operationoperator: 74
operand: 76
71Literal
72Literal
73Literal
74Literal
75ExprTuple76
76Literal