logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, ExprTuple, Variable
from proveit.core_expr_types import Len
from proveit.linear_algebra import TensorProd
from proveit.numbers import Add, Interval, one, three
from proveit.physics.quantum import I
from proveit.physics.quantum.QFT import InverseFourierTransform
from proveit.physics.quantum.QPE import _Psi_ket, _ket_u, _psi__t_ket, _s, _t
from proveit.physics.quantum.circuits import Gate, Input, MultiQubitElem, Output
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Variable("_b", latex_format = r"{_{-}b}")
sub_expr3 = Add(_t, _s)
sub_expr4 = Add(_t, one)
sub_expr5 = Interval(one, _t)
sub_expr6 = MultiQubitElem(element = Input(state = TensorProd(_psi__t_ket, _ket_u), part = sub_expr1), targets = Interval(one, sub_expr3))
expr = ExprTuple(Len(operands = [ExprRange(sub_expr1, sub_expr6, one, _t).with_wrapping_at(2,6), ExprRange(sub_expr1, sub_expr6, sub_expr4, sub_expr3).with_wrapping_at(2,6), ExprRange(sub_expr1, MultiQubitElem(element = Gate(operation = InverseFourierTransform(_t), part = sub_expr1), targets = sub_expr5), one, _t), ExprRange(sub_expr1, Gate(operation = I).with_implicit_representation(), one, _s), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _Psi_ket, part = sub_expr1), targets = sub_expr5), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _ket_u, part = sub_expr1), targets = Interval(sub_expr4, sub_expr3)), one, _s)]), Len(operands = [ExprRange(sub_expr2, ExprRange(sub_expr1, [sub_expr2, sub_expr1], one, sub_expr3), one, three)]))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(|\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + 1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + 2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + s~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, ..\left(s - 3\right) \times.., \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~1~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~2~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~s~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}\right)|, |\left(\left(1, 1\right), \left(1, 2\right), \ldots, \left(1, t + s\right), \left(2, 1\right), \left(2, 2\right), \ldots, \left(2, t + s\right), \ldots\ldots, \left(3, 1\right), \left(3, 2\right), \ldots, \left(3, t + s\right)\right)|\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 4
operands: 3
2Operationoperator: 4
operands: 5
3ExprTuple6, 7, 8, 9, 10, 11
4Literal
5ExprTuple12
6ExprRangelambda_map: 13
start_index: 70
end_index: 74
7ExprRangelambda_map: 13
start_index: 60
end_index: 61
8ExprRangelambda_map: 14
start_index: 70
end_index: 74
9ExprRangelambda_map: 15
start_index: 70
end_index: 71
10ExprRangelambda_map: 16
start_index: 70
end_index: 74
11ExprRangelambda_map: 17
start_index: 70
end_index: 71
12ExprRangelambda_map: 18
start_index: 70
end_index: 19
13Lambdaparameter: 59
body: 20
14Lambdaparameter: 59
body: 21
15Lambdaparameter: 59
body: 22
16Lambdaparameter: 59
body: 23
17Lambdaparameter: 59
body: 24
18Lambdaparameter: 55
body: 26
19Literal
20Operationoperator: 31
operands: 27
21Operationoperator: 31
operands: 28
22Operationoperator: 47
operands: 29
23Operationoperator: 31
operands: 30
24Operationoperator: 31
operands: 32
25ExprTuple55
26ExprRangelambda_map: 33
start_index: 70
end_index: 61
27NamedExprselement: 34
targets: 35
28NamedExprselement: 36
targets: 39
29NamedExprsoperation: 37
30NamedExprselement: 38
targets: 39
31Literal
32NamedExprselement: 40
targets: 41
33Lambdaparameter: 59
body: 43
34Operationoperator: 44
operands: 45
35Operationoperator: 53
operands: 46
36Operationoperator: 47
operands: 48
37Literal
38Operationoperator: 51
operands: 49
39Operationoperator: 53
operands: 50
40Operationoperator: 51
operands: 52
41Operationoperator: 53
operands: 54
42ExprTuple59
43ExprTuple55, 59
44Literal
45NamedExprsstate: 56
part: 59
46ExprTuple70, 61
47Literal
48NamedExprsoperation: 57
part: 59
49NamedExprsstate: 58
part: 59
50ExprTuple70, 74
51Literal
52NamedExprsstate: 69
part: 59
53Literal
54ExprTuple60, 61
55Variable
56Operationoperator: 62
operands: 63
57Operationoperator: 64
operand: 74
58Literal
59Variable
60Operationoperator: 66
operands: 65
61Operationoperator: 66
operands: 67
62Literal
63ExprTuple68, 69
64Literal
65ExprTuple74, 70
66Literal
67ExprTuple74, 71
68Operationoperator: 72
operand: 74
69Literal
70Literal
71Literal
72Literal
73ExprTuple74
74Literal