logo

Expression of type Len

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, Variable
from proveit.core_expr_types import Len
from proveit.linear_algebra import TensorProd
from proveit.numbers import Add, Interval, one
from proveit.physics.quantum import I
from proveit.physics.quantum.QFT import InverseFourierTransform
from proveit.physics.quantum.QPE import _Psi_ket, _ket_u, _psi__t_ket, _s, _t
from proveit.physics.quantum.circuits import Gate, Input, MultiQubitElem, Output
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Add(_t, _s)
sub_expr3 = Add(_t, one)
sub_expr4 = Interval(one, _t)
sub_expr5 = MultiQubitElem(element = Input(state = TensorProd(_psi__t_ket, _ket_u), part = sub_expr1), targets = Interval(one, sub_expr2))
expr = Len(operands = [ExprRange(sub_expr1, sub_expr5, one, _t).with_wrapping_at(2,6), ExprRange(sub_expr1, sub_expr5, sub_expr3, sub_expr2).with_wrapping_at(2,6), ExprRange(sub_expr1, MultiQubitElem(element = Gate(operation = InverseFourierTransform(_t), part = sub_expr1), targets = sub_expr4), one, _t), ExprRange(sub_expr1, Gate(operation = I).with_implicit_representation(), one, _s), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _Psi_ket, part = sub_expr1), targets = sub_expr4), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _ket_u, part = sub_expr1), targets = Interval(sub_expr3, sub_expr2)), one, _s)])
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
|\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + 1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + 2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + s~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, ..\left(s - 3\right) \times.., \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~1~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~2~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~s~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}\right)|
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4, 5, 6, 7, 8
3ExprRangelambda_map: 9
start_index: 59
end_index: 63
4ExprRangelambda_map: 9
start_index: 49
end_index: 50
5ExprRangelambda_map: 10
start_index: 59
end_index: 63
6ExprRangelambda_map: 11
start_index: 59
end_index: 60
7ExprRangelambda_map: 12
start_index: 59
end_index: 63
8ExprRangelambda_map: 13
start_index: 59
end_index: 60
9Lambdaparameter: 48
body: 14
10Lambdaparameter: 48
body: 15
11Lambdaparameter: 48
body: 16
12Lambdaparameter: 48
body: 17
13Lambdaparameter: 48
body: 19
14Operationoperator: 24
operands: 20
15Operationoperator: 24
operands: 21
16Operationoperator: 37
operands: 22
17Operationoperator: 24
operands: 23
18ExprTuple48
19Operationoperator: 24
operands: 25
20NamedExprselement: 26
targets: 27
21NamedExprselement: 28
targets: 31
22NamedExprsoperation: 29
23NamedExprselement: 30
targets: 31
24Literal
25NamedExprselement: 32
targets: 33
26Operationoperator: 34
operands: 35
27Operationoperator: 43
operands: 36
28Operationoperator: 37
operands: 38
29Literal
30Operationoperator: 41
operands: 39
31Operationoperator: 43
operands: 40
32Operationoperator: 41
operands: 42
33Operationoperator: 43
operands: 44
34Literal
35NamedExprsstate: 45
part: 48
36ExprTuple59, 50
37Literal
38NamedExprsoperation: 46
part: 48
39NamedExprsstate: 47
part: 48
40ExprTuple59, 63
41Literal
42NamedExprsstate: 58
part: 48
43Literal
44ExprTuple49, 50
45Operationoperator: 51
operands: 52
46Operationoperator: 53
operand: 63
47Literal
48Variable
49Operationoperator: 55
operands: 54
50Operationoperator: 55
operands: 56
51Literal
52ExprTuple57, 58
53Literal
54ExprTuple63, 59
55Literal
56ExprTuple63, 60
57Operationoperator: 61
operand: 63
58Literal
59Literal
60Literal
61Literal
62ExprTuple63
63Literal