logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, ExprTuple, Variable
from proveit.linear_algebra import TensorProd
from proveit.numbers import Add, Interval, one
from proveit.physics.quantum import I
from proveit.physics.quantum.QFT import InverseFourierTransform
from proveit.physics.quantum.QPE import _Psi_ket, _ket_u, _psi__t_ket, _s, _t
from proveit.physics.quantum.circuits import Gate, Input, MultiQubitElem, Output
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = Add(_t, _s)
sub_expr3 = Add(_t, one)
sub_expr4 = Interval(one, _t)
sub_expr5 = MultiQubitElem(element = Input(state = TensorProd(_psi__t_ket, _ket_u), part = sub_expr1), targets = Interval(one, sub_expr2))
expr = ExprTuple(ExprRange(sub_expr1, sub_expr5, one, _t).with_wrapping_at(2,6), ExprRange(sub_expr1, sub_expr5, sub_expr3, sub_expr2).with_wrapping_at(2,6), ExprRange(sub_expr1, MultiQubitElem(element = Gate(operation = InverseFourierTransform(_t), part = sub_expr1), targets = sub_expr4), one, _t), ExprRange(sub_expr1, Gate(operation = I).with_implicit_representation(), one, _s), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _Psi_ket, part = sub_expr1), targets = sub_expr4), one, _t), ExprRange(sub_expr1, MultiQubitElem(element = Output(state = _ket_u, part = sub_expr1), targets = Interval(sub_expr3, sub_expr2)), one, _s))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + 1~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + 2~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& \qin{\lvert \psi_{t} \rangle {\otimes} \lvert u \rangle~\mbox{part}~t + s~\mbox{on}~\{1~\ldotp \ldotp~t + s\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \gate{{\mathrm {FT}}^{\dag}_{t}~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array}, ..\left(s - 3\right) \times.., \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qw & \qw 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~1~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~2~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert \Psi \rangle~\mbox{part}~t~\mbox{on}~\{1~\ldotp \ldotp~t\}} 
} \end{array},\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~1~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~2~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}, \ldots, \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{\lvert u \rangle~\mbox{part}~s~\mbox{on}~\{t + 1~\ldotp \ldotp~t + s\}} 
} \end{array}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2, 3, 4, 5, 6
1ExprRangelambda_map: 7
start_index: 57
end_index: 61
2ExprRangelambda_map: 7
start_index: 47
end_index: 48
3ExprRangelambda_map: 8
start_index: 57
end_index: 61
4ExprRangelambda_map: 9
start_index: 57
end_index: 58
5ExprRangelambda_map: 10
start_index: 57
end_index: 61
6ExprRangelambda_map: 11
start_index: 57
end_index: 58
7Lambdaparameter: 46
body: 12
8Lambdaparameter: 46
body: 13
9Lambdaparameter: 46
body: 14
10Lambdaparameter: 46
body: 15
11Lambdaparameter: 46
body: 17
12Operationoperator: 22
operands: 18
13Operationoperator: 22
operands: 19
14Operationoperator: 35
operands: 20
15Operationoperator: 22
operands: 21
16ExprTuple46
17Operationoperator: 22
operands: 23
18NamedExprselement: 24
targets: 25
19NamedExprselement: 26
targets: 29
20NamedExprsoperation: 27
21NamedExprselement: 28
targets: 29
22Literal
23NamedExprselement: 30
targets: 31
24Operationoperator: 32
operands: 33
25Operationoperator: 41
operands: 34
26Operationoperator: 35
operands: 36
27Literal
28Operationoperator: 39
operands: 37
29Operationoperator: 41
operands: 38
30Operationoperator: 39
operands: 40
31Operationoperator: 41
operands: 42
32Literal
33NamedExprsstate: 43
part: 46
34ExprTuple57, 48
35Literal
36NamedExprsoperation: 44
part: 46
37NamedExprsstate: 45
part: 46
38ExprTuple57, 61
39Literal
40NamedExprsstate: 56
part: 46
41Literal
42ExprTuple47, 48
43Operationoperator: 49
operands: 50
44Operationoperator: 51
operand: 61
45Literal
46Variable
47Operationoperator: 53
operands: 52
48Operationoperator: 53
operands: 54
49Literal
50ExprTuple55, 56
51Literal
52ExprTuple61, 57
53Literal
54ExprTuple61, 58
55Operationoperator: 59
operand: 61
56Literal
57Literal
58Literal
59Literal
60ExprTuple61
61Literal