import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import k, l, n
from proveit.logic import Equals, Forall
from proveit.numbers import Exp, Interval, Mult, Neg, e, frac, i, one, pi, subtract, two, zero
from proveit.physics.quantum import NumBra, NumKet, Qmult
from proveit.physics.quantum.QFT import InverseFourierTransform
# build up the expression from sub-expressions
sub_expr1 = Exp(two, n)
expr = Forall(instance_param_or_params = [k, l], instance_expr = Equals(Qmult(NumBra(l, n), InverseFourierTransform(n), NumKet(k, n)), Mult(frac(one, Exp(two, frac(n, two))), Exp(e, frac(Neg(Mult(two, pi, i, k, l)), sub_expr1)))), domain = Interval(zero, subtract(sub_expr1, one)))
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
stored_expr.style_options()
# display the expression information
stored_expr.expr_info()