logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QFT

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, k, l, n
from proveit.numbers import Exp, Mult, Neg, e, frac, i, pi, two
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(e, frac(Neg(Mult(two, pi, i, k, l)), Exp(two, n)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\mathsf{e}, \frac{-\left(2 \cdot \pi \cdot \mathsf{i} \cdot k \cdot l\right)}{2^{n}}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Literal
2Operationoperator: 3
operands: 4
3Literal
4ExprTuple5, 6
5Operationoperator: 7
operand: 11
6Operationoperator: 9
operands: 10
7Literal
8ExprTuple11
9Literal
10ExprTuple15, 12
11Operationoperator: 13
operands: 14
12Variable
13Literal
14ExprTuple15, 16, 17, 18, 19
15Literal
16Literal
17Literal
18Variable
19Variable