logo

Expression of type Equals

from the theory of proveit.physics.quantum.QFT

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import k, l, n
from proveit.logic import Equals
from proveit.numbers import Exp, Mult, Neg, e, frac, i, one, pi, two
from proveit.physics.quantum import NumBra, NumKet, Qmult
from proveit.physics.quantum.QFT import InverseFourierTransform
In [2]:
# build up the expression from sub-expressions
expr = Equals(Qmult(NumBra(l, n), InverseFourierTransform(n), NumKet(k, n)), Mult(frac(one, Exp(two, frac(n, two))), Exp(e, frac(Neg(Mult(two, pi, i, k, l)), Exp(two, n)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left({_{n}}\langle l \rvert \thinspace {\mathrm {FT}}^{\dag}_{n} \thinspace \lvert k \rangle_{n}\right) = \left(\frac{1}{2^{\frac{n}{2}}} \cdot \mathsf{e}^{\frac{-\left(2 \cdot \pi \cdot \mathsf{i} \cdot k \cdot l\right)}{2^{n}}}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 5
operands: 6
4Operationoperator: 38
operands: 7
5Literal
6ExprTuple8, 9, 10
7ExprTuple11, 12
8Operationoperator: 13
operands: 14
9Operationoperator: 15
operand: 37
10Operationoperator: 17
operands: 18
11Operationoperator: 30
operands: 19
12Operationoperator: 34
operands: 20
13Literal
14ExprTuple44, 37
15Literal
16ExprTuple37
17Literal
18ExprTuple43, 37
19ExprTuple21, 22
20ExprTuple23, 24
21Literal
22Operationoperator: 34
operands: 25
23Literal
24Operationoperator: 30
operands: 26
25ExprTuple40, 27
26ExprTuple28, 29
27Operationoperator: 30
operands: 31
28Operationoperator: 32
operand: 36
29Operationoperator: 34
operands: 35
30Literal
31ExprTuple37, 40
32Literal
33ExprTuple36
34Literal
35ExprTuple40, 37
36Operationoperator: 38
operands: 39
37Variable
38Literal
39ExprTuple40, 41, 42, 43, 44
40Literal
41Literal
42Literal
43Variable
44Variable