| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5, 6*, 7* | ⊢  |
| | : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.numbers.addition.strong_bound_via_left_term_bound |
| 2 | instantiation | 8, 57 | ⊢  |
| | :  |
| 3 | instantiation | 9, 56, 137 | ⊢  |
| | : , :  |
| 4 | instantiation | 159, 155, 10 | ⊢  |
| | : , : , :  |
| 5 | instantiation | 11, 56, 137, 99, 123, 12 | ⊢  |
| | : , : , :  |
| 6 | instantiation | 13, 14, 15, 16 | ⊢  |
| | : , : , : , :  |
| 7 | instantiation | 58, 17, 18 | ⊢  |
| | : , : , :  |
| 8 | theorem | | ⊢  |
| | proveit.numbers.negation.real_closure |
| 9 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_real_closure_bin |
| 10 | instantiation | 19, 64, 110 | ⊢  |
| | : , :  |
| 11 | theorem | | ⊢  |
| | proveit.numbers.multiplication.strong_bound_via_right_factor_bound |
| 12 | instantiation | 20, 80 | ⊢  |
| | :  |
| 13 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 14 | instantiation | 58, 21, 22 | ⊢  |
| | : , : , :  |
| 15 | instantiation | 23 | ⊢  |
| | :  |
| 16 | instantiation | 24, 28 | ⊢  |
| | : , :  |
| 17 | instantiation | 30, 25 | ⊢  |
| | : , : , :  |
| 18 | instantiation | 26, 158, 119, 27, 96, 28*, 29* | ⊢  |
| | : , : , : , :  |
| 19 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_rational_closure_bin |
| 20 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.positive_if_in_rational_pos |
| 21 | instantiation | 30, 31 | ⊢  |
| | : , : , :  |
| 22 | instantiation | 32, 33 | ⊢  |
| | :  |
| 23 | axiom | | ⊢  |
| | proveit.logic.equality.equals_reflexivity |
| 24 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 25 | instantiation | 100, 41 | ⊢  |
| | :  |
| 26 | theorem | | ⊢  |
| | proveit.numbers.addition.rational_pair_addition |
| 27 | instantiation | 159, 34, 35 | ⊢  |
| | : , : , :  |
| 28 | instantiation | 36, 86, 37, 83 | ⊢  |
| | : , :  |
| 29 | instantiation | 58, 38, 39 | ⊢  |
| | : , : , :  |
| 30 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 31 | instantiation | 40, 41 | ⊢  |
| | :  |
| 32 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_left |
| 33 | instantiation | 42, 43 | ⊢  |
| | :  |
| 34 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.neg_int_within_int |
| 35 | instantiation | 44, 45 | ⊢  |
| | :  |
| 36 | theorem | | ⊢  |
| | proveit.numbers.division.neg_frac_neg_numerator |
| 37 | instantiation | 159, 153, 46 | ⊢  |
| | : , : , :  |
| 38 | instantiation | 66, 67, 47, 48, 49, 50 | ⊢  |
| | : , : , : , :  |
| 39 | instantiation | 51, 52, 53, 86, 54*, 55* | ⊢  |
| | : , : , :  |
| 40 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_zero_right |
| 41 | instantiation | 159, 153, 56 | ⊢  |
| | : , : , :  |
| 42 | theorem | | ⊢  |
| | proveit.numbers.negation.complex_closure |
| 43 | instantiation | 159, 153, 57 | ⊢  |
| | : , : , :  |
| 44 | theorem | | ⊢  |
| | proveit.numbers.negation.int_neg_closure |
| 45 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 46 | instantiation | 159, 155, 82 | ⊢  |
| | : , : , :  |
| 47 | instantiation | 84 | ⊢  |
| | : , :  |
| 48 | instantiation | 84 | ⊢  |
| | : , :  |
| 49 | instantiation | 58, 59, 60 | ⊢  |
| | : , : , :  |
| 50 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.mult_6_3 |
| 51 | theorem | | ⊢  |
| | proveit.numbers.division.frac_cancel_left |
| 52 | instantiation | 159, 62, 61 | ⊢  |
| | : , : , :  |
| 53 | instantiation | 159, 62, 63 | ⊢  |
| | : , : , :  |
| 54 | instantiation | 100, 73 | ⊢  |
| | :  |
| 55 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.mult_9_2 |
| 56 | instantiation | 159, 155, 64 | ⊢  |
| | : , : , :  |
| 57 | instantiation | 159, 155, 65 | ⊢  |
| | : , : , :  |
| 58 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 59 | instantiation | 66, 67, 68, 69, 70, 71 | ⊢  |
| | : , : , : , :  |
| 60 | instantiation | 72, 73, 101, 74, 75 | ⊢  |
| | : , : , :  |
| 61 | instantiation | 159, 77, 76 | ⊢  |
| | : , : , :  |
| 62 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 63 | instantiation | 159, 77, 78 | ⊢  |
| | : , : , :  |
| 64 | instantiation | 159, 79, 80 | ⊢  |
| | : , : , :  |
| 65 | instantiation | 81, 110, 82, 83 | ⊢  |
| | : , :  |
| 66 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 67 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 68 | instantiation | 84 | ⊢  |
| | : , :  |
| 69 | instantiation | 84 | ⊢  |
| | : , :  |
| 70 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.mult_5_3 |
| 71 | instantiation | 85, 101, 86, 87* | ⊢  |
| | : , :  |
| 72 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.subtract_from_add |
| 73 | instantiation | 159, 153, 88 | ⊢  |
| | : , : , :  |
| 74 | instantiation | 159, 153, 89 | ⊢  |
| | : , : , :  |
| 75 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_9_6 |
| 76 | instantiation | 159, 91, 90 | ⊢  |
| | : , : , :  |
| 77 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 78 | instantiation | 159, 91, 92 | ⊢  |
| | : , : , :  |
| 79 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
| 80 | instantiation | 93, 94, 95 | ⊢  |
| | : , :  |
| 81 | theorem | | ⊢  |
| | proveit.numbers.division.div_rational_closure |
| 82 | instantiation | 159, 157, 96 | ⊢  |
| | : , : , :  |
| 83 | instantiation | 97, 98 | ⊢  |
| | :  |
| 84 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 85 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_neg_right |
| 86 | instantiation | 159, 153, 99 | ⊢  |
| | : , : , :  |
| 87 | instantiation | 100, 101 | ⊢  |
| | :  |
| 88 | instantiation | 159, 155, 102 | ⊢  |
| | : , : , :  |
| 89 | instantiation | 159, 155, 103 | ⊢  |
| | : , : , :  |
| 90 | instantiation | 159, 104, 135 | ⊢  |
| | : , : , :  |
| 91 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 92 | instantiation | 159, 104, 105 | ⊢  |
| | : , : , :  |
| 93 | theorem | | ⊢  |
| | proveit.numbers.division.div_rational_pos_closure |
| 94 | instantiation | 159, 107, 106 | ⊢  |
| | : , : , :  |
| 95 | instantiation | 159, 107, 108 | ⊢  |
| | : , : , :  |
| 96 | instantiation | 159, 160, 109 | ⊢  |
| | : , : , :  |
| 97 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 98 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 99 | instantiation | 159, 155, 110 | ⊢  |
| | : , : , :  |
| 100 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_right |
| 101 | instantiation | 159, 153, 111 | ⊢  |
| | : , : , :  |
| 102 | instantiation | 159, 157, 112 | ⊢  |
| | : , : , :  |
| 103 | instantiation | 159, 157, 113 | ⊢  |
| | : , : , :  |
| 104 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 105 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 106 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat5 |
| 107 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
| 108 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat6 |
| 109 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 110 | instantiation | 159, 157, 114 | ⊢  |
| | : , : , :  |
| 111 | instantiation | 159, 155, 115 | ⊢  |
| | : , : , :  |
| 112 | instantiation | 159, 160, 116 | ⊢  |
| | : , : , :  |
| 113 | instantiation | 159, 117, 118 | ⊢  |
| | : , : , :  |
| 114 | instantiation | 159, 160, 133 | ⊢  |
| | : , : , :  |
| 115 | instantiation | 159, 157, 119 | ⊢  |
| | : , : , :  |
| 116 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat9 |
| 117 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_int |
| 118 | instantiation | 120, 133, 121, 122, 123 | ⊢  |
| | : , : , :  |
| 119 | instantiation | 159, 160, 124 | ⊢  |
| | : , : , :  |
| 120 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
| 121 | instantiation | 126, 133, 125 | ⊢  |
| | :  |
| 122 | instantiation | 126, 161, 127 | ⊢  |
| | :  |
| 123 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.less_0_1 |
| 124 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat6 |
| 125 | instantiation | 130, 128, 129 | ⊢  |
| | : , :  |
| 126 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.n_in_digits |
| 127 | instantiation | 130, 131, 132 | ⊢  |
| | : , :  |
| 128 | instantiation | 143, 133 | ⊢  |
| | :  |
| 129 | instantiation | 134, 135 | ⊢  |
| | :  |
| 130 | theorem | | ⊢  |
| | proveit.logic.booleans.conjunction.and_if_both |
| 131 | instantiation | 143, 161 | ⊢  |
| | :  |
| 132 | instantiation | 136, 154, 137, 138, 139, 140*, 141* | ⊢  |
| | : , : , :  |
| 133 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 134 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_lower_bound |
| 135 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat9 |
| 136 | theorem | | ⊢  |
| | proveit.numbers.addition.weak_bound_via_left_term_bound |
| 137 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 138 | instantiation | 159, 155, 142 | ⊢  |
| | : , : , :  |
| 139 | instantiation | 143, 152 | ⊢  |
| | :  |
| 140 | instantiation | 144, 145, 146 | ⊢  |
| | : , : , :  |
| 141 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_4_5 |
| 142 | instantiation | 159, 157, 147 | ⊢  |
| | : , : , :  |
| 143 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
| 144 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 145 | instantiation | 148, 150 | ⊢  |
| | :  |
| 146 | instantiation | 149, 150, 151 | ⊢  |
| | : , :  |
| 147 | instantiation | 159, 160, 152 | ⊢  |
| | : , : , :  |
| 148 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_right |
| 149 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 150 | instantiation | 159, 153, 154 | ⊢  |
| | : , : , :  |
| 151 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.zero_is_complex |
| 152 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 153 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 154 | instantiation | 159, 155, 156 | ⊢  |
| | : , : , :  |
| 155 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 156 | instantiation | 159, 157, 158 | ⊢  |
| | : , : , :  |
| 157 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 158 | instantiation | 159, 160, 161 | ⊢  |
| | : , : , :  |
| 159 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 160 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 161 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| *equality replacement requirements |