| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6*, 7* | ⊢ |
| : , : , : |
1 | theorem | | ⊢ |
| proveit.numbers.addition.strong_bound_via_left_term_bound |
2 | instantiation | 8, 57 | ⊢ |
| : |
3 | instantiation | 9, 56, 137 | ⊢ |
| : , : |
4 | instantiation | 159, 155, 10 | ⊢ |
| : , : , : |
5 | instantiation | 11, 56, 137, 99, 123, 12 | ⊢ |
| : , : , : |
6 | instantiation | 13, 14, 15, 16 | ⊢ |
| : , : , : , : |
7 | instantiation | 58, 17, 18 | ⊢ |
| : , : , : |
8 | theorem | | ⊢ |
| proveit.numbers.negation.real_closure |
9 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_real_closure_bin |
10 | instantiation | 19, 64, 110 | ⊢ |
| : , : |
11 | theorem | | ⊢ |
| proveit.numbers.multiplication.strong_bound_via_right_factor_bound |
12 | instantiation | 20, 80 | ⊢ |
| : |
13 | theorem | | ⊢ |
| proveit.logic.equality.four_chain_transitivity |
14 | instantiation | 58, 21, 22 | ⊢ |
| : , : , : |
15 | instantiation | 23 | ⊢ |
| : |
16 | instantiation | 24, 28 | ⊢ |
| : , : |
17 | instantiation | 30, 25 | ⊢ |
| : , : , : |
18 | instantiation | 26, 158, 119, 27, 96, 28*, 29* | ⊢ |
| : , : , : , : |
19 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_rational_closure_bin |
20 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.positive_if_in_rational_pos |
21 | instantiation | 30, 31 | ⊢ |
| : , : , : |
22 | instantiation | 32, 33 | ⊢ |
| : |
23 | axiom | | ⊢ |
| proveit.logic.equality.equals_reflexivity |
24 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
25 | instantiation | 100, 41 | ⊢ |
| : |
26 | theorem | | ⊢ |
| proveit.numbers.addition.rational_pair_addition |
27 | instantiation | 159, 34, 35 | ⊢ |
| : , : , : |
28 | instantiation | 36, 86, 37, 83 | ⊢ |
| : , : |
29 | instantiation | 58, 38, 39 | ⊢ |
| : , : , : |
30 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
31 | instantiation | 40, 41 | ⊢ |
| : |
32 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_left |
33 | instantiation | 42, 43 | ⊢ |
| : |
34 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.neg_int_within_int |
35 | instantiation | 44, 45 | ⊢ |
| : |
36 | theorem | | ⊢ |
| proveit.numbers.division.neg_frac_neg_numerator |
37 | instantiation | 159, 153, 46 | ⊢ |
| : , : , : |
38 | instantiation | 66, 67, 47, 48, 49, 50 | ⊢ |
| : , : , : , : |
39 | instantiation | 51, 52, 53, 86, 54*, 55* | ⊢ |
| : , : , : |
40 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_zero_right |
41 | instantiation | 159, 153, 56 | ⊢ |
| : , : , : |
42 | theorem | | ⊢ |
| proveit.numbers.negation.complex_closure |
43 | instantiation | 159, 153, 57 | ⊢ |
| : , : , : |
44 | theorem | | ⊢ |
| proveit.numbers.negation.int_neg_closure |
45 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
46 | instantiation | 159, 155, 82 | ⊢ |
| : , : , : |
47 | instantiation | 84 | ⊢ |
| : , : |
48 | instantiation | 84 | ⊢ |
| : , : |
49 | instantiation | 58, 59, 60 | ⊢ |
| : , : , : |
50 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.mult_6_3 |
51 | theorem | | ⊢ |
| proveit.numbers.division.frac_cancel_left |
52 | instantiation | 159, 62, 61 | ⊢ |
| : , : , : |
53 | instantiation | 159, 62, 63 | ⊢ |
| : , : , : |
54 | instantiation | 100, 73 | ⊢ |
| : |
55 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.mult_9_2 |
56 | instantiation | 159, 155, 64 | ⊢ |
| : , : , : |
57 | instantiation | 159, 155, 65 | ⊢ |
| : , : , : |
58 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
59 | instantiation | 66, 67, 68, 69, 70, 71 | ⊢ |
| : , : , : , : |
60 | instantiation | 72, 73, 101, 74, 75 | ⊢ |
| : , : , : |
61 | instantiation | 159, 77, 76 | ⊢ |
| : , : , : |
62 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
63 | instantiation | 159, 77, 78 | ⊢ |
| : , : , : |
64 | instantiation | 159, 79, 80 | ⊢ |
| : , : , : |
65 | instantiation | 81, 110, 82, 83 | ⊢ |
| : , : |
66 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
67 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
68 | instantiation | 84 | ⊢ |
| : , : |
69 | instantiation | 84 | ⊢ |
| : , : |
70 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.mult_5_3 |
71 | instantiation | 85, 101, 86, 87* | ⊢ |
| : , : |
72 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.subtract_from_add |
73 | instantiation | 159, 153, 88 | ⊢ |
| : , : , : |
74 | instantiation | 159, 153, 89 | ⊢ |
| : , : , : |
75 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_9_6 |
76 | instantiation | 159, 91, 90 | ⊢ |
| : , : , : |
77 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
78 | instantiation | 159, 91, 92 | ⊢ |
| : , : , : |
79 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
80 | instantiation | 93, 94, 95 | ⊢ |
| : , : |
81 | theorem | | ⊢ |
| proveit.numbers.division.div_rational_closure |
82 | instantiation | 159, 157, 96 | ⊢ |
| : , : , : |
83 | instantiation | 97, 98 | ⊢ |
| : |
84 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
85 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_neg_right |
86 | instantiation | 159, 153, 99 | ⊢ |
| : , : , : |
87 | instantiation | 100, 101 | ⊢ |
| : |
88 | instantiation | 159, 155, 102 | ⊢ |
| : , : , : |
89 | instantiation | 159, 155, 103 | ⊢ |
| : , : , : |
90 | instantiation | 159, 104, 135 | ⊢ |
| : , : , : |
91 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
92 | instantiation | 159, 104, 105 | ⊢ |
| : , : , : |
93 | theorem | | ⊢ |
| proveit.numbers.division.div_rational_pos_closure |
94 | instantiation | 159, 107, 106 | ⊢ |
| : , : , : |
95 | instantiation | 159, 107, 108 | ⊢ |
| : , : , : |
96 | instantiation | 159, 160, 109 | ⊢ |
| : , : , : |
97 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
99 | instantiation | 159, 155, 110 | ⊢ |
| : , : , : |
100 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
101 | instantiation | 159, 153, 111 | ⊢ |
| : , : , : |
102 | instantiation | 159, 157, 112 | ⊢ |
| : , : , : |
103 | instantiation | 159, 157, 113 | ⊢ |
| : , : , : |
104 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
105 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
106 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat5 |
107 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
108 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat6 |
109 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
110 | instantiation | 159, 157, 114 | ⊢ |
| : , : , : |
111 | instantiation | 159, 155, 115 | ⊢ |
| : , : , : |
112 | instantiation | 159, 160, 116 | ⊢ |
| : , : , : |
113 | instantiation | 159, 117, 118 | ⊢ |
| : , : , : |
114 | instantiation | 159, 160, 133 | ⊢ |
| : , : , : |
115 | instantiation | 159, 157, 119 | ⊢ |
| : , : , : |
116 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat9 |
117 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
118 | instantiation | 120, 133, 121, 122, 123 | ⊢ |
| : , : , : |
119 | instantiation | 159, 160, 124 | ⊢ |
| : , : , : |
120 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
121 | instantiation | 126, 133, 125 | ⊢ |
| : |
122 | instantiation | 126, 161, 127 | ⊢ |
| : |
123 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
124 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat6 |
125 | instantiation | 130, 128, 129 | ⊢ |
| : , : |
126 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.n_in_digits |
127 | instantiation | 130, 131, 132 | ⊢ |
| : , : |
128 | instantiation | 143, 133 | ⊢ |
| : |
129 | instantiation | 134, 135 | ⊢ |
| : |
130 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.and_if_both |
131 | instantiation | 143, 161 | ⊢ |
| : |
132 | instantiation | 136, 154, 137, 138, 139, 140*, 141* | ⊢ |
| : , : , : |
133 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
134 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_lower_bound |
135 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
136 | theorem | | ⊢ |
| proveit.numbers.addition.weak_bound_via_left_term_bound |
137 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
138 | instantiation | 159, 155, 142 | ⊢ |
| : , : , : |
139 | instantiation | 143, 152 | ⊢ |
| : |
140 | instantiation | 144, 145, 146 | ⊢ |
| : , : , : |
141 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_4_5 |
142 | instantiation | 159, 157, 147 | ⊢ |
| : , : , : |
143 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
144 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
145 | instantiation | 148, 150 | ⊢ |
| : |
146 | instantiation | 149, 150, 151 | ⊢ |
| : , : |
147 | instantiation | 159, 160, 152 | ⊢ |
| : , : , : |
148 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
149 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
150 | instantiation | 159, 153, 154 | ⊢ |
| : , : , : |
151 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
152 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
153 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
154 | instantiation | 159, 155, 156 | ⊢ |
| : , : , : |
155 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
156 | instantiation | 159, 157, 158 | ⊢ |
| : , : , : |
157 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
158 | instantiation | 159, 160, 161 | ⊢ |
| : , : , : |
159 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
160 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
161 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
*equality replacement requirements |