| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | ⊢  |
| | : , : , :  |
| 1 | reference | 35 | ⊢  |
| 2 | instantiation | 4, 5 | ⊢  |
| | : , : , :  |
| 3 | instantiation | 6, 128, 89, 7, 43, 8*, 9* | ⊢  |
| | : , : , : , :  |
| 4 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 5 | instantiation | 74, 10 | ⊢  |
| | :  |
| 6 | theorem | | ⊢  |
| | proveit.numbers.addition.rational_pair_addition |
| 7 | instantiation | 129, 11, 12 | ⊢  |
| | : , : , :  |
| 8 | instantiation | 13, 63, 14, 15 | ⊢  |
| | : , :  |
| 9 | instantiation | 35, 16, 17 | ⊢  |
| | : , : , :  |
| 10 | instantiation | 129, 123, 18 | ⊢  |
| | : , : , :  |
| 11 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.neg_int_within_int |
| 12 | instantiation | 19, 20 | ⊢  |
| | :  |
| 13 | theorem | | ⊢  |
| | proveit.numbers.division.neg_frac_neg_numerator |
| 14 | instantiation | 129, 123, 21 | ⊢  |
| | : , : , :  |
| 15 | instantiation | 22, 23 | ⊢  |
| | :  |
| 16 | instantiation | 44, 45, 24, 25, 26, 27 | ⊢  |
| | : , : , : , :  |
| 17 | instantiation | 28, 29, 30, 63, 31*, 32* | ⊢  |
| | : , : , :  |
| 18 | instantiation | 129, 125, 33 | ⊢  |
| | : , : , :  |
| 19 | theorem | | ⊢  |
| | proveit.numbers.negation.int_neg_closure |
| 20 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 21 | instantiation | 129, 125, 34 | ⊢  |
| | : , : , :  |
| 22 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 23 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 24 | instantiation | 61 | ⊢  |
| | : , :  |
| 25 | instantiation | 61 | ⊢  |
| | : , :  |
| 26 | instantiation | 35, 36, 37 | ⊢  |
| | : , : , :  |
| 27 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.mult_6_3 |
| 28 | theorem | | ⊢  |
| | proveit.numbers.division.frac_cancel_left |
| 29 | instantiation | 129, 39, 38 | ⊢  |
| | : , : , :  |
| 30 | instantiation | 129, 39, 40 | ⊢  |
| | : , : , :  |
| 31 | instantiation | 74, 51 | ⊢  |
| | :  |
| 32 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.mult_9_2 |
| 33 | instantiation | 129, 41, 42 | ⊢  |
| | : , : , :  |
| 34 | instantiation | 129, 127, 43 | ⊢  |
| | : , : , :  |
| 35 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 36 | instantiation | 44, 45, 46, 47, 48, 49 | ⊢  |
| | : , : , : , :  |
| 37 | instantiation | 50, 51, 75, 52, 53 | ⊢  |
| | : , : , :  |
| 38 | instantiation | 129, 55, 54 | ⊢  |
| | : , : , :  |
| 39 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 40 | instantiation | 129, 55, 56 | ⊢  |
| | : , : , :  |
| 41 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
| 42 | instantiation | 57, 58, 59 | ⊢  |
| | : , :  |
| 43 | instantiation | 129, 130, 60 | ⊢  |
| | : , : , :  |
| 44 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 45 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 46 | instantiation | 61 | ⊢  |
| | : , :  |
| 47 | instantiation | 61 | ⊢  |
| | : , :  |
| 48 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.mult_5_3 |
| 49 | instantiation | 62, 75, 63, 64* | ⊢  |
| | : , :  |
| 50 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.subtract_from_add |
| 51 | instantiation | 129, 123, 65 | ⊢  |
| | : , : , :  |
| 52 | instantiation | 129, 123, 66 | ⊢  |
| | : , : , :  |
| 53 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_9_6 |
| 54 | instantiation | 129, 68, 67 | ⊢  |
| | : , : , :  |
| 55 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 56 | instantiation | 129, 68, 69 | ⊢  |
| | : , : , :  |
| 57 | theorem | | ⊢  |
| | proveit.numbers.division.div_rational_pos_closure |
| 58 | instantiation | 129, 71, 70 | ⊢  |
| | : , : , :  |
| 59 | instantiation | 129, 71, 72 | ⊢  |
| | : , : , :  |
| 60 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 61 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 62 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_neg_right |
| 63 | instantiation | 129, 123, 73 | ⊢  |
| | : , : , :  |
| 64 | instantiation | 74, 75 | ⊢  |
| | :  |
| 65 | instantiation | 129, 125, 76 | ⊢  |
| | : , : , :  |
| 66 | instantiation | 129, 125, 77 | ⊢  |
| | : , : , :  |
| 67 | instantiation | 129, 78, 105 | ⊢  |
| | : , : , :  |
| 68 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 69 | instantiation | 129, 78, 79 | ⊢  |
| | : , : , :  |
| 70 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat5 |
| 71 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
| 72 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat6 |
| 73 | instantiation | 129, 125, 80 | ⊢  |
| | : , : , :  |
| 74 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_right |
| 75 | instantiation | 129, 123, 81 | ⊢  |
| | : , : , :  |
| 76 | instantiation | 129, 127, 82 | ⊢  |
| | : , : , :  |
| 77 | instantiation | 129, 127, 83 | ⊢  |
| | : , : , :  |
| 78 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 79 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 80 | instantiation | 129, 127, 84 | ⊢  |
| | : , : , :  |
| 81 | instantiation | 129, 125, 85 | ⊢  |
| | : , : , :  |
| 82 | instantiation | 129, 130, 86 | ⊢  |
| | : , : , :  |
| 83 | instantiation | 129, 87, 88 | ⊢  |
| | : , : , :  |
| 84 | instantiation | 129, 130, 103 | ⊢  |
| | : , : , :  |
| 85 | instantiation | 129, 127, 89 | ⊢  |
| | : , : , :  |
| 86 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat9 |
| 87 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_int |
| 88 | instantiation | 90, 103, 91, 92, 93 | ⊢  |
| | : , : , :  |
| 89 | instantiation | 129, 130, 94 | ⊢  |
| | : , : , :  |
| 90 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
| 91 | instantiation | 96, 103, 95 | ⊢  |
| | :  |
| 92 | instantiation | 96, 131, 97 | ⊢  |
| | :  |
| 93 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.less_0_1 |
| 94 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat6 |
| 95 | instantiation | 100, 98, 99 | ⊢  |
| | : , :  |
| 96 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.n_in_digits |
| 97 | instantiation | 100, 101, 102 | ⊢  |
| | : , :  |
| 98 | instantiation | 113, 103 | ⊢  |
| | :  |
| 99 | instantiation | 104, 105 | ⊢  |
| | :  |
| 100 | theorem | | ⊢  |
| | proveit.logic.booleans.conjunction.and_if_both |
| 101 | instantiation | 113, 131 | ⊢  |
| | :  |
| 102 | instantiation | 106, 124, 107, 108, 109, 110*, 111* | ⊢  |
| | : , : , :  |
| 103 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 104 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_lower_bound |
| 105 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat9 |
| 106 | theorem | | ⊢  |
| | proveit.numbers.addition.weak_bound_via_left_term_bound |
| 107 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 108 | instantiation | 129, 125, 112 | ⊢  |
| | : , : , :  |
| 109 | instantiation | 113, 122 | ⊢  |
| | :  |
| 110 | instantiation | 114, 115, 116 | ⊢  |
| | : , : , :  |
| 111 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_4_5 |
| 112 | instantiation | 129, 127, 117 | ⊢  |
| | : , : , :  |
| 113 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
| 114 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 115 | instantiation | 118, 120 | ⊢  |
| | :  |
| 116 | instantiation | 119, 120, 121 | ⊢  |
| | : , :  |
| 117 | instantiation | 129, 130, 122 | ⊢  |
| | : , : , :  |
| 118 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_right |
| 119 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 120 | instantiation | 129, 123, 124 | ⊢  |
| | : , : , :  |
| 121 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.zero_is_complex |
| 122 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 123 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 124 | instantiation | 129, 125, 126 | ⊢  |
| | : , : , :  |
| 125 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 126 | instantiation | 129, 127, 128 | ⊢  |
| | : , : , :  |
| 127 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 128 | instantiation | 129, 130, 131 | ⊢  |
| | : , : , :  |
| 129 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 130 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 131 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| *equality replacement requirements |