| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | ⊢ |
| : , : , : |
1 | reference | 35 | ⊢ |
2 | instantiation | 4, 5 | ⊢ |
| : , : , : |
3 | instantiation | 6, 128, 89, 7, 43, 8*, 9* | ⊢ |
| : , : , : , : |
4 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
5 | instantiation | 74, 10 | ⊢ |
| : |
6 | theorem | | ⊢ |
| proveit.numbers.addition.rational_pair_addition |
7 | instantiation | 129, 11, 12 | ⊢ |
| : , : , : |
8 | instantiation | 13, 63, 14, 15 | ⊢ |
| : , : |
9 | instantiation | 35, 16, 17 | ⊢ |
| : , : , : |
10 | instantiation | 129, 123, 18 | ⊢ |
| : , : , : |
11 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.neg_int_within_int |
12 | instantiation | 19, 20 | ⊢ |
| : |
13 | theorem | | ⊢ |
| proveit.numbers.division.neg_frac_neg_numerator |
14 | instantiation | 129, 123, 21 | ⊢ |
| : , : , : |
15 | instantiation | 22, 23 | ⊢ |
| : |
16 | instantiation | 44, 45, 24, 25, 26, 27 | ⊢ |
| : , : , : , : |
17 | instantiation | 28, 29, 30, 63, 31*, 32* | ⊢ |
| : , : , : |
18 | instantiation | 129, 125, 33 | ⊢ |
| : , : , : |
19 | theorem | | ⊢ |
| proveit.numbers.negation.int_neg_closure |
20 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
21 | instantiation | 129, 125, 34 | ⊢ |
| : , : , : |
22 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
23 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
24 | instantiation | 61 | ⊢ |
| : , : |
25 | instantiation | 61 | ⊢ |
| : , : |
26 | instantiation | 35, 36, 37 | ⊢ |
| : , : , : |
27 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.mult_6_3 |
28 | theorem | | ⊢ |
| proveit.numbers.division.frac_cancel_left |
29 | instantiation | 129, 39, 38 | ⊢ |
| : , : , : |
30 | instantiation | 129, 39, 40 | ⊢ |
| : , : , : |
31 | instantiation | 74, 51 | ⊢ |
| : |
32 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.mult_9_2 |
33 | instantiation | 129, 41, 42 | ⊢ |
| : , : , : |
34 | instantiation | 129, 127, 43 | ⊢ |
| : , : , : |
35 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
36 | instantiation | 44, 45, 46, 47, 48, 49 | ⊢ |
| : , : , : , : |
37 | instantiation | 50, 51, 75, 52, 53 | ⊢ |
| : , : , : |
38 | instantiation | 129, 55, 54 | ⊢ |
| : , : , : |
39 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
40 | instantiation | 129, 55, 56 | ⊢ |
| : , : , : |
41 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
42 | instantiation | 57, 58, 59 | ⊢ |
| : , : |
43 | instantiation | 129, 130, 60 | ⊢ |
| : , : , : |
44 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
45 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
46 | instantiation | 61 | ⊢ |
| : , : |
47 | instantiation | 61 | ⊢ |
| : , : |
48 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.mult_5_3 |
49 | instantiation | 62, 75, 63, 64* | ⊢ |
| : , : |
50 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.subtract_from_add |
51 | instantiation | 129, 123, 65 | ⊢ |
| : , : , : |
52 | instantiation | 129, 123, 66 | ⊢ |
| : , : , : |
53 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_9_6 |
54 | instantiation | 129, 68, 67 | ⊢ |
| : , : , : |
55 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
56 | instantiation | 129, 68, 69 | ⊢ |
| : , : , : |
57 | theorem | | ⊢ |
| proveit.numbers.division.div_rational_pos_closure |
58 | instantiation | 129, 71, 70 | ⊢ |
| : , : , : |
59 | instantiation | 129, 71, 72 | ⊢ |
| : , : , : |
60 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
61 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
62 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_neg_right |
63 | instantiation | 129, 123, 73 | ⊢ |
| : , : , : |
64 | instantiation | 74, 75 | ⊢ |
| : |
65 | instantiation | 129, 125, 76 | ⊢ |
| : , : , : |
66 | instantiation | 129, 125, 77 | ⊢ |
| : , : , : |
67 | instantiation | 129, 78, 105 | ⊢ |
| : , : , : |
68 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
69 | instantiation | 129, 78, 79 | ⊢ |
| : , : , : |
70 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat5 |
71 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
72 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat6 |
73 | instantiation | 129, 125, 80 | ⊢ |
| : , : , : |
74 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
75 | instantiation | 129, 123, 81 | ⊢ |
| : , : , : |
76 | instantiation | 129, 127, 82 | ⊢ |
| : , : , : |
77 | instantiation | 129, 127, 83 | ⊢ |
| : , : , : |
78 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
79 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
80 | instantiation | 129, 127, 84 | ⊢ |
| : , : , : |
81 | instantiation | 129, 125, 85 | ⊢ |
| : , : , : |
82 | instantiation | 129, 130, 86 | ⊢ |
| : , : , : |
83 | instantiation | 129, 87, 88 | ⊢ |
| : , : , : |
84 | instantiation | 129, 130, 103 | ⊢ |
| : , : , : |
85 | instantiation | 129, 127, 89 | ⊢ |
| : , : , : |
86 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat9 |
87 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
88 | instantiation | 90, 103, 91, 92, 93 | ⊢ |
| : , : , : |
89 | instantiation | 129, 130, 94 | ⊢ |
| : , : , : |
90 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
91 | instantiation | 96, 103, 95 | ⊢ |
| : |
92 | instantiation | 96, 131, 97 | ⊢ |
| : |
93 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
94 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat6 |
95 | instantiation | 100, 98, 99 | ⊢ |
| : , : |
96 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.n_in_digits |
97 | instantiation | 100, 101, 102 | ⊢ |
| : , : |
98 | instantiation | 113, 103 | ⊢ |
| : |
99 | instantiation | 104, 105 | ⊢ |
| : |
100 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.and_if_both |
101 | instantiation | 113, 131 | ⊢ |
| : |
102 | instantiation | 106, 124, 107, 108, 109, 110*, 111* | ⊢ |
| : , : , : |
103 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
104 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_lower_bound |
105 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
106 | theorem | | ⊢ |
| proveit.numbers.addition.weak_bound_via_left_term_bound |
107 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
108 | instantiation | 129, 125, 112 | ⊢ |
| : , : , : |
109 | instantiation | 113, 122 | ⊢ |
| : |
110 | instantiation | 114, 115, 116 | ⊢ |
| : , : , : |
111 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_4_5 |
112 | instantiation | 129, 127, 117 | ⊢ |
| : , : , : |
113 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
114 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
115 | instantiation | 118, 120 | ⊢ |
| : |
116 | instantiation | 119, 120, 121 | ⊢ |
| : , : |
117 | instantiation | 129, 130, 122 | ⊢ |
| : , : , : |
118 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
119 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
120 | instantiation | 129, 123, 124 | ⊢ |
| : , : , : |
121 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
122 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
123 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
124 | instantiation | 129, 125, 126 | ⊢ |
| : , : , : |
125 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
126 | instantiation | 129, 127, 128 | ⊢ |
| : , : , : |
127 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
128 | instantiation | 129, 130, 131 | ⊢ |
| : , : , : |
129 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
130 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
131 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
*equality replacement requirements |