logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  : , : , :
1reference35  ⊢  
2instantiation4, 5  ⊢  
  : , : , :
3instantiation6, 128, 89, 7, 43, 8*, 9*  ⊢  
  : , : , : , :
4axiom  ⊢  
 proveit.logic.equality.substitution
5instantiation74, 10  ⊢  
  :
6theorem  ⊢  
 proveit.numbers.addition.rational_pair_addition
7instantiation129, 11, 12  ⊢  
  : , : , :
8instantiation13, 63, 14, 15  ⊢  
  : , :
9instantiation35, 16, 17  ⊢  
  : , : , :
10instantiation129, 123, 18  ⊢  
  : , : , :
11theorem  ⊢  
 proveit.numbers.number_sets.integers.neg_int_within_int
12instantiation19, 20  ⊢  
  :
13theorem  ⊢  
 proveit.numbers.division.neg_frac_neg_numerator
14instantiation129, 123, 21  ⊢  
  : , : , :
15instantiation22, 23  ⊢  
  :
16instantiation44, 45, 24, 25, 26, 27  ⊢  
  : , : , : , :
17instantiation28, 29, 30, 63, 31*, 32*  ⊢  
  : , : , :
18instantiation129, 125, 33  ⊢  
  : , : , :
19theorem  ⊢  
 proveit.numbers.negation.int_neg_closure
20theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
21instantiation129, 125, 34  ⊢  
  : , : , :
22theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos
23theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat3
24instantiation61  ⊢  
  : , :
25instantiation61  ⊢  
  : , :
26instantiation35, 36, 37  ⊢  
  : , : , :
27theorem  ⊢  
 proveit.numbers.numerals.decimals.mult_6_3
28theorem  ⊢  
 proveit.numbers.division.frac_cancel_left
29instantiation129, 39, 38  ⊢  
  : , : , :
30instantiation129, 39, 40  ⊢  
  : , : , :
31instantiation74, 51  ⊢  
  :
32theorem  ⊢  
 proveit.numbers.numerals.decimals.mult_9_2
33instantiation129, 41, 42  ⊢  
  : , : , :
34instantiation129, 127, 43  ⊢  
  : , : , :
35axiom  ⊢  
 proveit.logic.equality.equals_transitivity
36instantiation44, 45, 46, 47, 48, 49  ⊢  
  : , : , : , :
37instantiation50, 51, 75, 52, 53  ⊢  
  : , : , :
38instantiation129, 55, 54  ⊢  
  : , : , :
39theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero
40instantiation129, 55, 56  ⊢  
  : , : , :
41theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational
42instantiation57, 58, 59  ⊢  
  : , :
43instantiation129, 130, 60  ⊢  
  : , : , :
44axiom  ⊢  
 proveit.core_expr_types.operations.operands_substitution
45theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
46instantiation61  ⊢  
  : , :
47instantiation61  ⊢  
  : , :
48theorem  ⊢  
 proveit.numbers.numerals.decimals.mult_5_3
49instantiation62, 75, 63, 64*  ⊢  
  : , :
50theorem  ⊢  
 proveit.numbers.addition.subtraction.subtract_from_add
51instantiation129, 123, 65  ⊢  
  : , : , :
52instantiation129, 123, 66  ⊢  
  : , : , :
53theorem  ⊢  
 proveit.numbers.numerals.decimals.add_9_6
54instantiation129, 68, 67  ⊢  
  : , : , :
55theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero
56instantiation129, 68, 69  ⊢  
  : , : , :
57theorem  ⊢  
 proveit.numbers.division.div_rational_pos_closure
58instantiation129, 71, 70  ⊢  
  : , : , :
59instantiation129, 71, 72  ⊢  
  : , : , :
60theorem  ⊢  
 proveit.numbers.numerals.decimals.nat3
61theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
62theorem  ⊢  
 proveit.numbers.multiplication.mult_neg_right
63instantiation129, 123, 73  ⊢  
  : , : , :
64instantiation74, 75  ⊢  
  :
65instantiation129, 125, 76  ⊢  
  : , : , :
66instantiation129, 125, 77  ⊢  
  : , : , :
67instantiation129, 78, 105  ⊢  
  : , : , :
68theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero
69instantiation129, 78, 79  ⊢  
  : , : , :
70theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat5
71theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos
72theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat6
73instantiation129, 125, 80  ⊢  
  : , : , :
74theorem  ⊢  
 proveit.numbers.multiplication.elim_one_right
75instantiation129, 123, 81  ⊢  
  : , : , :
76instantiation129, 127, 82  ⊢  
  : , : , :
77instantiation129, 127, 83  ⊢  
  : , : , :
78theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int
79theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
80instantiation129, 127, 84  ⊢  
  : , : , :
81instantiation129, 125, 85  ⊢  
  : , : , :
82instantiation129, 130, 86  ⊢  
  : , : , :
83instantiation129, 87, 88  ⊢  
  : , : , :
84instantiation129, 130, 103  ⊢  
  : , : , :
85instantiation129, 127, 89  ⊢  
  : , : , :
86theorem  ⊢  
 proveit.numbers.numerals.decimals.nat9
87theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_int
88instantiation90, 103, 91, 92, 93  ⊢  
  : , : , :
89instantiation129, 130, 94  ⊢  
  : , : , :
90theorem  ⊢  
 proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos
91instantiation96, 103, 95  ⊢  
  :
92instantiation96, 131, 97  ⊢  
  :
93theorem  ⊢  
 proveit.numbers.numerals.decimals.less_0_1
94theorem  ⊢  
 proveit.numbers.numerals.decimals.nat6
95instantiation100, 98, 99  ⊢  
  : , :
96theorem  ⊢  
 proveit.numbers.numerals.decimals.n_in_digits
97instantiation100, 101, 102  ⊢  
  : , :
98instantiation113, 103  ⊢  
  :
99instantiation104, 105  ⊢  
  :
100theorem  ⊢  
 proveit.logic.booleans.conjunction.and_if_both
101instantiation113, 131  ⊢  
  :
102instantiation106, 124, 107, 108, 109, 110*, 111*  ⊢  
  : , : , :
103theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
104theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.natural_pos_lower_bound
105theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat9
106theorem  ⊢  
 proveit.numbers.addition.weak_bound_via_left_term_bound
107theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
108instantiation129, 125, 112  ⊢  
  : , : , :
109instantiation113, 122  ⊢  
  :
110instantiation114, 115, 116  ⊢  
  : , : , :
111theorem  ⊢  
 proveit.numbers.numerals.decimals.add_4_5
112instantiation129, 127, 117  ⊢  
  : , : , :
113theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.natural_lower_bound
114theorem  ⊢  
 proveit.logic.equality.sub_right_side_into
115instantiation118, 120  ⊢  
  :
116instantiation119, 120, 121  ⊢  
  : , :
117instantiation129, 130, 122  ⊢  
  : , : , :
118theorem  ⊢  
 proveit.numbers.addition.elim_zero_right
119theorem  ⊢  
 proveit.numbers.addition.commutation
120instantiation129, 123, 124  ⊢  
  : , : , :
121theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.zero_is_complex
122theorem  ⊢  
 proveit.numbers.numerals.decimals.nat4
123theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
124instantiation129, 125, 126  ⊢  
  : , : , :
125theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
126instantiation129, 127, 128  ⊢  
  : , : , :
127theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
128instantiation129, 130, 131  ⊢  
  : , : , :
129theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
130theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
131theorem  ⊢  
 proveit.numbers.numerals.decimals.nat5
*equality replacement requirements