logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4, 5, 6*, 7*  ⊢  
  : , : , : , :
1theorem  ⊢  
 proveit.numbers.addition.rational_pair_addition
2reference115  ⊢  
3reference76  ⊢  
4instantiation116, 8, 9  ⊢  
  : , : , :
5reference36  ⊢  
6instantiation10, 53, 11, 12  ⊢  
  : , :
7instantiation30, 13, 14  ⊢  
  : , : , :
8theorem  ⊢  
 proveit.numbers.number_sets.integers.neg_int_within_int
9instantiation15, 16  ⊢  
  :
10theorem  ⊢  
 proveit.numbers.division.neg_frac_neg_numerator
11instantiation116, 110, 17  ⊢  
  : , : , :
12instantiation18, 19  ⊢  
  :
13instantiation37, 38, 20, 21, 22, 23  ⊢  
  : , : , : , :
14instantiation24, 25, 26, 53, 27*, 28*  ⊢  
  : , : , :
15theorem  ⊢  
 proveit.numbers.negation.int_neg_closure
16theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
17instantiation116, 112, 29  ⊢  
  : , : , :
18theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos
19theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat3
20instantiation51  ⊢  
  : , :
21instantiation51  ⊢  
  : , :
22instantiation30, 31, 32  ⊢  
  : , : , :
23theorem  ⊢  
 proveit.numbers.numerals.decimals.mult_6_3
24theorem  ⊢  
 proveit.numbers.division.frac_cancel_left
25instantiation116, 34, 33  ⊢  
  : , : , :
26instantiation116, 34, 35  ⊢  
  : , : , :
27instantiation61, 44  ⊢  
  :
28theorem  ⊢  
 proveit.numbers.numerals.decimals.mult_9_2
29instantiation116, 114, 36  ⊢  
  : , : , :
30axiom  ⊢  
 proveit.logic.equality.equals_transitivity
31instantiation37, 38, 39, 40, 41, 42  ⊢  
  : , : , : , :
32instantiation43, 44, 62, 45, 46  ⊢  
  : , : , :
33instantiation116, 48, 47  ⊢  
  : , : , :
34theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero
35instantiation116, 48, 49  ⊢  
  : , : , :
36instantiation116, 117, 50  ⊢  
  : , : , :
37axiom  ⊢  
 proveit.core_expr_types.operations.operands_substitution
38theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
39instantiation51  ⊢  
  : , :
40instantiation51  ⊢  
  : , :
41theorem  ⊢  
 proveit.numbers.numerals.decimals.mult_5_3
42instantiation52, 62, 53, 54*  ⊢  
  : , :
43theorem  ⊢  
 proveit.numbers.addition.subtraction.subtract_from_add
44instantiation116, 110, 55  ⊢  
  : , : , :
45instantiation116, 110, 56  ⊢  
  : , : , :
46theorem  ⊢  
 proveit.numbers.numerals.decimals.add_9_6
47instantiation116, 58, 57  ⊢  
  : , : , :
48theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero
49instantiation116, 58, 59  ⊢  
  : , : , :
50theorem  ⊢  
 proveit.numbers.numerals.decimals.nat3
51theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
52theorem  ⊢  
 proveit.numbers.multiplication.mult_neg_right
53instantiation116, 110, 60  ⊢  
  : , : , :
54instantiation61, 62  ⊢  
  :
55instantiation116, 112, 63  ⊢  
  : , : , :
56instantiation116, 112, 64  ⊢  
  : , : , :
57instantiation116, 65, 92  ⊢  
  : , : , :
58theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero
59instantiation116, 65, 66  ⊢  
  : , : , :
60instantiation116, 112, 67  ⊢  
  : , : , :
61theorem  ⊢  
 proveit.numbers.multiplication.elim_one_right
62instantiation116, 110, 68  ⊢  
  : , : , :
63instantiation116, 114, 69  ⊢  
  : , : , :
64instantiation116, 114, 70  ⊢  
  : , : , :
65theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int
66theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
67instantiation116, 114, 71  ⊢  
  : , : , :
68instantiation116, 112, 72  ⊢  
  : , : , :
69instantiation116, 117, 73  ⊢  
  : , : , :
70instantiation116, 74, 75  ⊢  
  : , : , :
71instantiation116, 117, 90  ⊢  
  : , : , :
72instantiation116, 114, 76  ⊢  
  : , : , :
73theorem  ⊢  
 proveit.numbers.numerals.decimals.nat9
74theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_int
75instantiation77, 90, 78, 79, 80  ⊢  
  : , : , :
76instantiation116, 117, 81  ⊢  
  : , : , :
77theorem  ⊢  
 proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos
78instantiation83, 90, 82  ⊢  
  :
79instantiation83, 118, 84  ⊢  
  :
80theorem  ⊢  
 proveit.numbers.numerals.decimals.less_0_1
81theorem  ⊢  
 proveit.numbers.numerals.decimals.nat6
82instantiation87, 85, 86  ⊢  
  : , :
83theorem  ⊢  
 proveit.numbers.numerals.decimals.n_in_digits
84instantiation87, 88, 89  ⊢  
  : , :
85instantiation100, 90  ⊢  
  :
86instantiation91, 92  ⊢  
  :
87theorem  ⊢  
 proveit.logic.booleans.conjunction.and_if_both
88instantiation100, 118  ⊢  
  :
89instantiation93, 111, 94, 95, 96, 97*, 98*  ⊢  
  : , : , :
90theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
91theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.natural_pos_lower_bound
92theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat9
93theorem  ⊢  
 proveit.numbers.addition.weak_bound_via_left_term_bound
94theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
95instantiation116, 112, 99  ⊢  
  : , : , :
96instantiation100, 109  ⊢  
  :
97instantiation101, 102, 103  ⊢  
  : , : , :
98theorem  ⊢  
 proveit.numbers.numerals.decimals.add_4_5
99instantiation116, 114, 104  ⊢  
  : , : , :
100theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.natural_lower_bound
101theorem  ⊢  
 proveit.logic.equality.sub_right_side_into
102instantiation105, 107  ⊢  
  :
103instantiation106, 107, 108  ⊢  
  : , :
104instantiation116, 117, 109  ⊢  
  : , : , :
105theorem  ⊢  
 proveit.numbers.addition.elim_zero_right
106theorem  ⊢  
 proveit.numbers.addition.commutation
107instantiation116, 110, 111  ⊢  
  : , : , :
108theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.zero_is_complex
109theorem  ⊢  
 proveit.numbers.numerals.decimals.nat4
110theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
111instantiation116, 112, 113  ⊢  
  : , : , :
112theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
113instantiation116, 114, 115  ⊢  
  : , : , :
114theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
115instantiation116, 117, 118  ⊢  
  : , : , :
116theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
117theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
118theorem  ⊢  
 proveit.numbers.numerals.decimals.nat5
*equality replacement requirements