| step type | requirements | statement |
0 | instantiation | 1, 2, 3, 4, 5, 6*, 7* | ⊢ |
| : , : , : , : |
1 | theorem | | ⊢ |
| proveit.numbers.addition.rational_pair_addition |
2 | reference | 115 | ⊢ |
3 | reference | 76 | ⊢ |
4 | instantiation | 116, 8, 9 | ⊢ |
| : , : , : |
5 | reference | 36 | ⊢ |
6 | instantiation | 10, 53, 11, 12 | ⊢ |
| : , : |
7 | instantiation | 30, 13, 14 | ⊢ |
| : , : , : |
8 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.neg_int_within_int |
9 | instantiation | 15, 16 | ⊢ |
| : |
10 | theorem | | ⊢ |
| proveit.numbers.division.neg_frac_neg_numerator |
11 | instantiation | 116, 110, 17 | ⊢ |
| : , : , : |
12 | instantiation | 18, 19 | ⊢ |
| : |
13 | instantiation | 37, 38, 20, 21, 22, 23 | ⊢ |
| : , : , : , : |
14 | instantiation | 24, 25, 26, 53, 27*, 28* | ⊢ |
| : , : , : |
15 | theorem | | ⊢ |
| proveit.numbers.negation.int_neg_closure |
16 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat1 |
17 | instantiation | 116, 112, 29 | ⊢ |
| : , : , : |
18 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
19 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat3 |
20 | instantiation | 51 | ⊢ |
| : , : |
21 | instantiation | 51 | ⊢ |
| : , : |
22 | instantiation | 30, 31, 32 | ⊢ |
| : , : , : |
23 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.mult_6_3 |
24 | theorem | | ⊢ |
| proveit.numbers.division.frac_cancel_left |
25 | instantiation | 116, 34, 33 | ⊢ |
| : , : , : |
26 | instantiation | 116, 34, 35 | ⊢ |
| : , : , : |
27 | instantiation | 61, 44 | ⊢ |
| : |
28 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.mult_9_2 |
29 | instantiation | 116, 114, 36 | ⊢ |
| : , : , : |
30 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
31 | instantiation | 37, 38, 39, 40, 41, 42 | ⊢ |
| : , : , : , : |
32 | instantiation | 43, 44, 62, 45, 46 | ⊢ |
| : , : , : |
33 | instantiation | 116, 48, 47 | ⊢ |
| : , : , : |
34 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
35 | instantiation | 116, 48, 49 | ⊢ |
| : , : , : |
36 | instantiation | 116, 117, 50 | ⊢ |
| : , : , : |
37 | axiom | | ⊢ |
| proveit.core_expr_types.operations.operands_substitution |
38 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |
39 | instantiation | 51 | ⊢ |
| : , : |
40 | instantiation | 51 | ⊢ |
| : , : |
41 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.mult_5_3 |
42 | instantiation | 52, 62, 53, 54* | ⊢ |
| : , : |
43 | theorem | | ⊢ |
| proveit.numbers.addition.subtraction.subtract_from_add |
44 | instantiation | 116, 110, 55 | ⊢ |
| : , : , : |
45 | instantiation | 116, 110, 56 | ⊢ |
| : , : , : |
46 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_9_6 |
47 | instantiation | 116, 58, 57 | ⊢ |
| : , : , : |
48 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
49 | instantiation | 116, 58, 59 | ⊢ |
| : , : , : |
50 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
51 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
52 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_neg_right |
53 | instantiation | 116, 110, 60 | ⊢ |
| : , : , : |
54 | instantiation | 61, 62 | ⊢ |
| : |
55 | instantiation | 116, 112, 63 | ⊢ |
| : , : , : |
56 | instantiation | 116, 112, 64 | ⊢ |
| : , : , : |
57 | instantiation | 116, 65, 92 | ⊢ |
| : , : , : |
58 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
59 | instantiation | 116, 65, 66 | ⊢ |
| : , : , : |
60 | instantiation | 116, 112, 67 | ⊢ |
| : , : , : |
61 | theorem | | ⊢ |
| proveit.numbers.multiplication.elim_one_right |
62 | instantiation | 116, 110, 68 | ⊢ |
| : , : , : |
63 | instantiation | 116, 114, 69 | ⊢ |
| : , : , : |
64 | instantiation | 116, 114, 70 | ⊢ |
| : , : , : |
65 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
66 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat2 |
67 | instantiation | 116, 114, 71 | ⊢ |
| : , : , : |
68 | instantiation | 116, 112, 72 | ⊢ |
| : , : , : |
69 | instantiation | 116, 117, 73 | ⊢ |
| : , : , : |
70 | instantiation | 116, 74, 75 | ⊢ |
| : , : , : |
71 | instantiation | 116, 117, 90 | ⊢ |
| : , : , : |
72 | instantiation | 116, 114, 76 | ⊢ |
| : , : , : |
73 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat9 |
74 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_pos_within_int |
75 | instantiation | 77, 90, 78, 79, 80 | ⊢ |
| : , : , : |
76 | instantiation | 116, 117, 81 | ⊢ |
| : , : , : |
77 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
78 | instantiation | 83, 90, 82 | ⊢ |
| : |
79 | instantiation | 83, 118, 84 | ⊢ |
| : |
80 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.less_0_1 |
81 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat6 |
82 | instantiation | 87, 85, 86 | ⊢ |
| : , : |
83 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.n_in_digits |
84 | instantiation | 87, 88, 89 | ⊢ |
| : , : |
85 | instantiation | 100, 90 | ⊢ |
| : |
86 | instantiation | 91, 92 | ⊢ |
| : |
87 | theorem | | ⊢ |
| proveit.logic.booleans.conjunction.and_if_both |
88 | instantiation | 100, 118 | ⊢ |
| : |
89 | instantiation | 93, 111, 94, 95, 96, 97*, 98* | ⊢ |
| : , : , : |
90 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
91 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_pos_lower_bound |
92 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.posnat9 |
93 | theorem | | ⊢ |
| proveit.numbers.addition.weak_bound_via_left_term_bound |
94 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.zero_is_real |
95 | instantiation | 116, 112, 99 | ⊢ |
| : , : , : |
96 | instantiation | 100, 109 | ⊢ |
| : |
97 | instantiation | 101, 102, 103 | ⊢ |
| : , : , : |
98 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.add_4_5 |
99 | instantiation | 116, 114, 104 | ⊢ |
| : , : , : |
100 | theorem | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
101 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
102 | instantiation | 105, 107 | ⊢ |
| : |
103 | instantiation | 106, 107, 108 | ⊢ |
| : , : |
104 | instantiation | 116, 117, 109 | ⊢ |
| : , : , : |
105 | theorem | | ⊢ |
| proveit.numbers.addition.elim_zero_right |
106 | theorem | | ⊢ |
| proveit.numbers.addition.commutation |
107 | instantiation | 116, 110, 111 | ⊢ |
| : , : , : |
108 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.zero_is_complex |
109 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
110 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
111 | instantiation | 116, 112, 113 | ⊢ |
| : , : , : |
112 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
113 | instantiation | 116, 114, 115 | ⊢ |
| : , : , : |
114 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
115 | instantiation | 116, 117, 118 | ⊢ |
| : , : , : |
116 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
117 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
118 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat5 |
*equality replacement requirements |