| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5, 6*, 7* | ⊢  |
| | : , : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.numbers.addition.rational_pair_addition |
| 2 | reference | 115 | ⊢  |
| 3 | reference | 76 | ⊢  |
| 4 | instantiation | 116, 8, 9 | ⊢  |
| | : , : , :  |
| 5 | reference | 36 | ⊢  |
| 6 | instantiation | 10, 53, 11, 12 | ⊢  |
| | : , :  |
| 7 | instantiation | 30, 13, 14 | ⊢  |
| | : , : , :  |
| 8 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.neg_int_within_int |
| 9 | instantiation | 15, 16 | ⊢  |
| | :  |
| 10 | theorem | | ⊢  |
| | proveit.numbers.division.neg_frac_neg_numerator |
| 11 | instantiation | 116, 110, 17 | ⊢  |
| | : , : , :  |
| 12 | instantiation | 18, 19 | ⊢  |
| | :  |
| 13 | instantiation | 37, 38, 20, 21, 22, 23 | ⊢  |
| | : , : , : , :  |
| 14 | instantiation | 24, 25, 26, 53, 27*, 28* | ⊢  |
| | : , : , :  |
| 15 | theorem | | ⊢  |
| | proveit.numbers.negation.int_neg_closure |
| 16 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 17 | instantiation | 116, 112, 29 | ⊢  |
| | : , : , :  |
| 18 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 19 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 20 | instantiation | 51 | ⊢  |
| | : , :  |
| 21 | instantiation | 51 | ⊢  |
| | : , :  |
| 22 | instantiation | 30, 31, 32 | ⊢  |
| | : , : , :  |
| 23 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.mult_6_3 |
| 24 | theorem | | ⊢  |
| | proveit.numbers.division.frac_cancel_left |
| 25 | instantiation | 116, 34, 33 | ⊢  |
| | : , : , :  |
| 26 | instantiation | 116, 34, 35 | ⊢  |
| | : , : , :  |
| 27 | instantiation | 61, 44 | ⊢  |
| | :  |
| 28 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.mult_9_2 |
| 29 | instantiation | 116, 114, 36 | ⊢  |
| | : , : , :  |
| 30 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 31 | instantiation | 37, 38, 39, 40, 41, 42 | ⊢  |
| | : , : , : , :  |
| 32 | instantiation | 43, 44, 62, 45, 46 | ⊢  |
| | : , : , :  |
| 33 | instantiation | 116, 48, 47 | ⊢  |
| | : , : , :  |
| 34 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 35 | instantiation | 116, 48, 49 | ⊢  |
| | : , : , :  |
| 36 | instantiation | 116, 117, 50 | ⊢  |
| | : , : , :  |
| 37 | axiom | | ⊢  |
| | proveit.core_expr_types.operations.operands_substitution |
| 38 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 39 | instantiation | 51 | ⊢  |
| | : , :  |
| 40 | instantiation | 51 | ⊢  |
| | : , :  |
| 41 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.mult_5_3 |
| 42 | instantiation | 52, 62, 53, 54* | ⊢  |
| | : , :  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.subtract_from_add |
| 44 | instantiation | 116, 110, 55 | ⊢  |
| | : , : , :  |
| 45 | instantiation | 116, 110, 56 | ⊢  |
| | : , : , :  |
| 46 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_9_6 |
| 47 | instantiation | 116, 58, 57 | ⊢  |
| | : , : , :  |
| 48 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 49 | instantiation | 116, 58, 59 | ⊢  |
| | : , : , :  |
| 50 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 51 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 52 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_neg_right |
| 53 | instantiation | 116, 110, 60 | ⊢  |
| | : , : , :  |
| 54 | instantiation | 61, 62 | ⊢  |
| | :  |
| 55 | instantiation | 116, 112, 63 | ⊢  |
| | : , : , :  |
| 56 | instantiation | 116, 112, 64 | ⊢  |
| | : , : , :  |
| 57 | instantiation | 116, 65, 92 | ⊢  |
| | : , : , :  |
| 58 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 59 | instantiation | 116, 65, 66 | ⊢  |
| | : , : , :  |
| 60 | instantiation | 116, 112, 67 | ⊢  |
| | : , : , :  |
| 61 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_right |
| 62 | instantiation | 116, 110, 68 | ⊢  |
| | : , : , :  |
| 63 | instantiation | 116, 114, 69 | ⊢  |
| | : , : , :  |
| 64 | instantiation | 116, 114, 70 | ⊢  |
| | : , : , :  |
| 65 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 66 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 67 | instantiation | 116, 114, 71 | ⊢  |
| | : , : , :  |
| 68 | instantiation | 116, 112, 72 | ⊢  |
| | : , : , :  |
| 69 | instantiation | 116, 117, 73 | ⊢  |
| | : , : , :  |
| 70 | instantiation | 116, 74, 75 | ⊢  |
| | : , : , :  |
| 71 | instantiation | 116, 117, 90 | ⊢  |
| | : , : , :  |
| 72 | instantiation | 116, 114, 76 | ⊢  |
| | : , : , :  |
| 73 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat9 |
| 74 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_int |
| 75 | instantiation | 77, 90, 78, 79, 80 | ⊢  |
| | : , : , :  |
| 76 | instantiation | 116, 117, 81 | ⊢  |
| | : , : , :  |
| 77 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos |
| 78 | instantiation | 83, 90, 82 | ⊢  |
| | :  |
| 79 | instantiation | 83, 118, 84 | ⊢  |
| | :  |
| 80 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.less_0_1 |
| 81 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat6 |
| 82 | instantiation | 87, 85, 86 | ⊢  |
| | : , :  |
| 83 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.n_in_digits |
| 84 | instantiation | 87, 88, 89 | ⊢  |
| | : , :  |
| 85 | instantiation | 100, 90 | ⊢  |
| | :  |
| 86 | instantiation | 91, 92 | ⊢  |
| | :  |
| 87 | theorem | | ⊢  |
| | proveit.logic.booleans.conjunction.and_if_both |
| 88 | instantiation | 100, 118 | ⊢  |
| | :  |
| 89 | instantiation | 93, 111, 94, 95, 96, 97*, 98* | ⊢  |
| | : , : , :  |
| 90 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 91 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_pos_lower_bound |
| 92 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat9 |
| 93 | theorem | | ⊢  |
| | proveit.numbers.addition.weak_bound_via_left_term_bound |
| 94 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 95 | instantiation | 116, 112, 99 | ⊢  |
| | : , : , :  |
| 96 | instantiation | 100, 109 | ⊢  |
| | :  |
| 97 | instantiation | 101, 102, 103 | ⊢  |
| | : , : , :  |
| 98 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_4_5 |
| 99 | instantiation | 116, 114, 104 | ⊢  |
| | : , : , :  |
| 100 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
| 101 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 102 | instantiation | 105, 107 | ⊢  |
| | :  |
| 103 | instantiation | 106, 107, 108 | ⊢  |
| | : , :  |
| 104 | instantiation | 116, 117, 109 | ⊢  |
| | : , : , :  |
| 105 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_right |
| 106 | theorem | | ⊢  |
| | proveit.numbers.addition.commutation |
| 107 | instantiation | 116, 110, 111 | ⊢  |
| | : , : , :  |
| 108 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.zero_is_complex |
| 109 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat4 |
| 110 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 111 | instantiation | 116, 112, 113 | ⊢  |
| | : , : , :  |
| 112 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 113 | instantiation | 116, 114, 115 | ⊢  |
| | : , : , :  |
| 114 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 115 | instantiation | 116, 117, 118 | ⊢  |
| | : , : , :  |
| 116 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 117 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 118 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat5 |
| *equality replacement requirements |