logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  : , : , :
1reference13  ⊢  
2instantiation19, 20, 4, 5, 6, 7  ⊢  
  : , : , : , :
3instantiation8, 9, 10, 34, 11*, 12*  ⊢  
  : , : , :
4instantiation32  ⊢  
  : , :
5instantiation32  ⊢  
  : , :
6instantiation13, 14, 15  ⊢  
  : , : , :
7theorem  ⊢  
 proveit.numbers.numerals.decimals.mult_6_3
8theorem  ⊢  
 proveit.numbers.division.frac_cancel_left
9instantiation97, 17, 16  ⊢  
  : , : , :
10instantiation97, 17, 18  ⊢  
  : , : , :
11instantiation42, 26  ⊢  
  :
12theorem  ⊢  
 proveit.numbers.numerals.decimals.mult_9_2
13axiom  ⊢  
 proveit.logic.equality.equals_transitivity
14instantiation19, 20, 21, 22, 23, 24  ⊢  
  : , : , : , :
15instantiation25, 26, 43, 27, 28  ⊢  
  : , : , :
16instantiation97, 30, 29  ⊢  
  : , : , :
17theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero
18instantiation97, 30, 31  ⊢  
  : , : , :
19axiom  ⊢  
 proveit.core_expr_types.operations.operands_substitution
20theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
21instantiation32  ⊢  
  : , :
22instantiation32  ⊢  
  : , :
23theorem  ⊢  
 proveit.numbers.numerals.decimals.mult_5_3
24instantiation33, 43, 34, 35*  ⊢  
  : , :
25theorem  ⊢  
 proveit.numbers.addition.subtraction.subtract_from_add
26instantiation97, 91, 36  ⊢  
  : , : , :
27instantiation97, 91, 37  ⊢  
  : , : , :
28theorem  ⊢  
 proveit.numbers.numerals.decimals.add_9_6
29instantiation97, 39, 38  ⊢  
  : , : , :
30theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero
31instantiation97, 39, 40  ⊢  
  : , : , :
32theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
33theorem  ⊢  
 proveit.numbers.multiplication.mult_neg_right
34instantiation97, 91, 41  ⊢  
  : , : , :
35instantiation42, 43  ⊢  
  :
36instantiation97, 93, 44  ⊢  
  : , : , :
37instantiation97, 93, 45  ⊢  
  : , : , :
38instantiation97, 46, 73  ⊢  
  : , : , :
39theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero
40instantiation97, 46, 47  ⊢  
  : , : , :
41instantiation97, 93, 48  ⊢  
  : , : , :
42theorem  ⊢  
 proveit.numbers.multiplication.elim_one_right
43instantiation97, 91, 49  ⊢  
  : , : , :
44instantiation97, 95, 50  ⊢  
  : , : , :
45instantiation97, 95, 51  ⊢  
  : , : , :
46theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int
47theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
48instantiation97, 95, 52  ⊢  
  : , : , :
49instantiation97, 93, 53  ⊢  
  : , : , :
50instantiation97, 98, 54  ⊢  
  : , : , :
51instantiation97, 55, 56  ⊢  
  : , : , :
52instantiation97, 98, 71  ⊢  
  : , : , :
53instantiation97, 95, 57  ⊢  
  : , : , :
54theorem  ⊢  
 proveit.numbers.numerals.decimals.nat9
55theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_int
56instantiation58, 71, 59, 60, 61  ⊢  
  : , : , :
57instantiation97, 98, 62  ⊢  
  : , : , :
58theorem  ⊢  
 proveit.numbers.numerals.decimals.deci_sequence_is_nat_pos
59instantiation64, 71, 63  ⊢  
  :
60instantiation64, 99, 65  ⊢  
  :
61theorem  ⊢  
 proveit.numbers.numerals.decimals.less_0_1
62theorem  ⊢  
 proveit.numbers.numerals.decimals.nat6
63instantiation68, 66, 67  ⊢  
  : , :
64theorem  ⊢  
 proveit.numbers.numerals.decimals.n_in_digits
65instantiation68, 69, 70  ⊢  
  : , :
66instantiation81, 71  ⊢  
  :
67instantiation72, 73  ⊢  
  :
68theorem  ⊢  
 proveit.logic.booleans.conjunction.and_if_both
69instantiation81, 99  ⊢  
  :
70instantiation74, 92, 75, 76, 77, 78*, 79*  ⊢  
  : , : , :
71theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
72theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.natural_pos_lower_bound
73theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat9
74theorem  ⊢  
 proveit.numbers.addition.weak_bound_via_left_term_bound
75theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
76instantiation97, 93, 80  ⊢  
  : , : , :
77instantiation81, 90  ⊢  
  :
78instantiation82, 83, 84  ⊢  
  : , : , :
79theorem  ⊢  
 proveit.numbers.numerals.decimals.add_4_5
80instantiation97, 95, 85  ⊢  
  : , : , :
81theorem  ⊢  
 proveit.numbers.number_sets.natural_numbers.natural_lower_bound
82theorem  ⊢  
 proveit.logic.equality.sub_right_side_into
83instantiation86, 88  ⊢  
  :
84instantiation87, 88, 89  ⊢  
  : , :
85instantiation97, 98, 90  ⊢  
  : , : , :
86theorem  ⊢  
 proveit.numbers.addition.elim_zero_right
87theorem  ⊢  
 proveit.numbers.addition.commutation
88instantiation97, 91, 92  ⊢  
  : , : , :
89theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.zero_is_complex
90theorem  ⊢  
 proveit.numbers.numerals.decimals.nat4
91theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
92instantiation97, 93, 94  ⊢  
  : , : , :
93theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
94instantiation97, 95, 96  ⊢  
  : , : , :
95theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
96instantiation97, 98, 99  ⊢  
  : , : , :
97theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
98theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
99theorem  ⊢  
 proveit.numbers.numerals.decimals.nat5
*equality replacement requirements