logo

Expression of type ExprTuple

from the theory of proveit.numbers.number_sets.natural_numbers

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Lambda, m, n
from proveit.logic import And, Equals, InSet
from proveit.numbers import Add, Natural, one
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda([m, n], Conditional(Equals(n, m), And(InSet(m, Natural), InSet(n, Natural), Equals(Add(m, one), Add(n, one))))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(m, n\right) \mapsto \left\{n = m \textrm{ if } m \in \mathbb{N} ,  n \in \mathbb{N} ,  \left(m + 1\right) = \left(n + 1\right)\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameters: 2
body: 3
2ExprTuple23, 24
3Conditionalvalue: 4
condition: 5
4Operationoperator: 15
operands: 6
5Operationoperator: 7
operands: 8
6ExprTuple24, 23
7Literal
8ExprTuple9, 10, 11
9Operationoperator: 13
operands: 12
10Operationoperator: 13
operands: 14
11Operationoperator: 15
operands: 16
12ExprTuple23, 17
13Literal
14ExprTuple24, 17
15Literal
16ExprTuple18, 19
17Literal
18Operationoperator: 21
operands: 20
19Operationoperator: 21
operands: 22
20ExprTuple23, 25
21Literal
22ExprTuple24, 25
23Variable
24Variable
25Literal