logo

Expression of type Lambda

from the theory of proveit.numbers.number_sets.natural_numbers

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, m, n
from proveit.logic import And, Equals, InSet
from proveit.numbers import Add, Natural, one
In [2]:
# build up the expression from sub-expressions
expr = Lambda([m, n], Conditional(Equals(n, m), And(InSet(m, Natural), InSet(n, Natural), Equals(Add(m, one), Add(n, one)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(m, n\right) \mapsto \left\{n = m \textrm{ if } m \in \mathbb{N} ,  n \in \mathbb{N} ,  \left(m + 1\right) = \left(n + 1\right)\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 1
body: 2
1ExprTuple22, 23
2Conditionalvalue: 3
condition: 4
3Operationoperator: 14
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple23, 22
6Literal
7ExprTuple8, 9, 10
8Operationoperator: 12
operands: 11
9Operationoperator: 12
operands: 13
10Operationoperator: 14
operands: 15
11ExprTuple22, 16
12Literal
13ExprTuple23, 16
14Literal
15ExprTuple17, 18
16Literal
17Operationoperator: 20
operands: 19
18Operationoperator: 20
operands: 21
19ExprTuple22, 24
20Literal
21ExprTuple23, 24
22Variable
23Variable
24Literal