logo

Expression of type Conditional

from the theory of proveit.numbers.number_sets.natural_numbers

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, m, n
from proveit.logic import And, Equals, InSet
from proveit.numbers import Add, Natural, one
In [2]:
# build up the expression from sub-expressions
expr = Conditional(Equals(n, m), And(InSet(m, Natural), InSet(n, Natural), Equals(Add(m, one), Add(n, one))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left\{n = m \textrm{ if } m \in \mathbb{N} ,  n \in \mathbb{N} ,  \left(m + 1\right) = \left(n + 1\right)\right..
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
condition_delimiter'comma' or 'and'commacomma('with_comma_delimiter', 'with_conjunction_delimiter')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Conditionalvalue: 1
condition: 2
1Operationoperator: 12
operands: 3
2Operationoperator: 4
operands: 5
3ExprTuple21, 20
4Literal
5ExprTuple6, 7, 8
6Operationoperator: 10
operands: 9
7Operationoperator: 10
operands: 11
8Operationoperator: 12
operands: 13
9ExprTuple20, 14
10Literal
11ExprTuple21, 14
12Literal
13ExprTuple15, 16
14Literal
15Operationoperator: 18
operands: 17
16Operationoperator: 18
operands: 19
17ExprTuple20, 22
18Literal
19ExprTuple21, 22
20Variable
21Variable
22Literal