logo

Expression of type ExprTuple

from the theory of proveit.numbers.number_sets.natural_numbers

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, m, n
from proveit.logic import Equals, InSet
from proveit.numbers import Add, Natural, one
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(InSet(m, Natural), InSet(n, Natural), Equals(Add(m, one), Add(n, one)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(m \in \mathbb{N}, n \in \mathbb{N}, \left(m + 1\right) = \left(n + 1\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2, 3
1Operationoperator: 5
operands: 4
2Operationoperator: 5
operands: 6
3Operationoperator: 7
operands: 8
4ExprTuple15, 9
5Literal
6ExprTuple16, 9
7Literal
8ExprTuple10, 11
9Literal
10Operationoperator: 13
operands: 12
11Operationoperator: 13
operands: 14
12ExprTuple15, 17
13Literal
14ExprTuple16, 17
15Variable
16Variable
17Literal