| step type | requirements | statement |
0 | instantiation | 1, 2, 3 | , , , , ⊢ |
| : , : , : |
1 | reference | 61 | ⊢ |
2 | instantiation | 46, 74, 101, 4, 5, 6, 7, 8 | , , , ⊢ |
| : , : , : , : , : , : |
3 | instantiation | 68, 9, 10 | , , , , ⊢ |
| : , : , : |
4 | instantiation | 87 | ⊢ |
| : , : |
5 | instantiation | 37, 11, 55 | , ⊢ |
| : , : |
6 | instantiation | 37, 50, 12 | , ⊢ |
| : , : |
7 | instantiation | 37, 24, 55 | , , ⊢ |
| : , : |
8 | instantiation | 37, 50, 13 | ⊢ |
| : , : |
9 | instantiation | 33, 14 | , ⊢ |
| : , : , : |
10 | instantiation | 35, 15 | , , , , ⊢ |
| : , : |
11 | instantiation | 99, 90, 54 | ⊢ |
| : , : , : |
12 | instantiation | 61, 16, 17 | , ⊢ |
| : , : , : |
13 | instantiation | 61, 18, 19 | ⊢ |
| : , : , : |
14 | instantiation | 68, 20, 21 | , ⊢ |
| : , : , : |
15 | instantiation | 22, 23, 24, 66, 25, 26 | , , , , ⊢ |
| : , : , : |
16 | instantiation | 84, 75, 27 | , ⊢ |
| : , : |
17 | instantiation | 68, 28, 29 | , ⊢ |
| : , : , : |
18 | instantiation | 84, 75, 30 | ⊢ |
| : , : |
19 | instantiation | 68, 31, 32 | ⊢ |
| : , : , : |
20 | instantiation | 33, 34 | , ⊢ |
| : , : , : |
21 | instantiation | 35, 36 | , ⊢ |
| : , : |
22 | theorem | | ⊢ |
| proveit.numbers.exponentiation.real_power_of_product |
23 | instantiation | 37, 50, 51 | ⊢ |
| : , : |
24 | instantiation | 99, 90, 38 | , ⊢ |
| : , : , : |
25 | instantiation | 39, 50, 51, 52 | ⊢ |
| : , : |
26 | assumption | | ⊢ |
27 | instantiation | 61, 40, 41 | , ⊢ |
| : , : , : |
28 | instantiation | 76, 74, 42, 77, 43, 78, 75, 81, 82, 55 | , ⊢ |
| : , : , : , : , : , : |
29 | instantiation | 76, 77, 101, 42, 78, 79, 43, 85, 86, 81, 82, 55 | , ⊢ |
| : , : , : , : , : , : |
30 | instantiation | 84, 81, 45 | ⊢ |
| : , : |
31 | instantiation | 76, 74, 101, 77, 44, 78, 75, 81, 45 | ⊢ |
| : , : , : , : , : , : |
32 | instantiation | 76, 77, 101, 78, 79, 44, 85, 86, 81, 45 | ⊢ |
| : , : , : , : , : , : |
33 | axiom | | ⊢ |
| proveit.logic.equality.substitution |
34 | instantiation | 46, 77, 47, 74, 78, 48, 85, 86, 81, 82, 55 | , ⊢ |
| : , : , : , : , : , : |
35 | theorem | | ⊢ |
| proveit.logic.equality.equals_reversal |
36 | instantiation | 49, 50, 51, 52 | , ⊢ |
| : , : |
37 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_complex_closure |
38 | instantiation | 53, 54, 57 | , ⊢ |
| : , : |
39 | theorem | | ⊢ |
| proveit.numbers.exponentiation.exp_not_eq_zero |
40 | instantiation | 84, 67, 55 | , ⊢ |
| : , : |
41 | instantiation | 76, 77, 101, 74, 78, 80, 81, 82, 55 | , ⊢ |
| : , : , : , : , : , : |
42 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat3 |
43 | instantiation | 56 | ⊢ |
| : , : , : |
44 | instantiation | 87 | ⊢ |
| : , : |
45 | instantiation | 99, 90, 57 | ⊢ |
| : , : , : |
46 | theorem | | ⊢ |
| proveit.numbers.multiplication.association |
47 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat4 |
48 | instantiation | 58 | ⊢ |
| : , : , : , : |
49 | instantiation | 59, 83 | ⊢ |
| : |
50 | instantiation | 99, 90, 60 | ⊢ |
| : , : , : |
51 | instantiation | 61, 62, 63 | ⊢ |
| : , : , : |
52 | instantiation | 64, 65 | ⊢ |
| : |
53 | theorem | | ⊢ |
| proveit.numbers.addition.add_real_closure_bin |
54 | assumption | | ⊢ |
55 | instantiation | 99, 90, 66 | ⊢ |
| : , : , : |
56 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
57 | assumption | | ⊢ |
58 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_4_typical_eq |
59 | theorem | | ⊢ |
| proveit.numbers.exponentiation.int_exp_of_exp |
60 | instantiation | 99, 95, 72 | ⊢ |
| : , : , : |
61 | theorem | | ⊢ |
| proveit.logic.equality.sub_right_side_into |
62 | instantiation | 84, 75, 67 | ⊢ |
| : , : |
63 | instantiation | 68, 69, 70 | ⊢ |
| : , : , : |
64 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.nonzero_if_in_real_nonzero |
65 | instantiation | 99, 71, 72 | ⊢ |
| : , : , : |
66 | instantiation | 99, 93, 73 | ⊢ |
| : , : , : |
67 | instantiation | 84, 81, 82 | ⊢ |
| : , : |
68 | axiom | | ⊢ |
| proveit.logic.equality.equals_transitivity |
69 | instantiation | 76, 74, 101, 77, 80, 78, 75, 81, 82 | ⊢ |
| : , : , : , : , : , : |
70 | instantiation | 76, 77, 101, 78, 79, 80, 85, 86, 81, 82 | ⊢ |
| : , : , : , : , : , : |
71 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real_nonzero |
72 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.e_is_real_pos |
73 | instantiation | 99, 97, 83 | ⊢ |
| : , : , : |
74 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat1 |
75 | instantiation | 84, 85, 86 | ⊢ |
| : , : |
76 | theorem | | ⊢ |
| proveit.numbers.multiplication.disassociation |
77 | axiom | | ⊢ |
| proveit.numbers.number_sets.natural_numbers.zero_in_nats |
78 | theorem | | ⊢ |
| proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
79 | instantiation | 87 | ⊢ |
| : , : |
80 | instantiation | 87 | ⊢ |
| : , : |
81 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.i_is_complex |
82 | instantiation | 99, 90, 88 | ⊢ |
| : , : , : |
83 | assumption | | ⊢ |
84 | theorem | | ⊢ |
| proveit.numbers.multiplication.mult_complex_closure_bin |
85 | instantiation | 99, 90, 89 | ⊢ |
| : , : , : |
86 | instantiation | 99, 90, 91 | ⊢ |
| : , : , : |
87 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
88 | instantiation | 99, 95, 92 | ⊢ |
| : , : , : |
89 | instantiation | 99, 93, 94 | ⊢ |
| : , : , : |
90 | theorem | | ⊢ |
| proveit.numbers.number_sets.complex_numbers.real_within_complex |
91 | instantiation | 99, 95, 96 | ⊢ |
| : , : , : |
92 | assumption | | ⊢ |
93 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.rational_within_real |
94 | instantiation | 99, 97, 98 | ⊢ |
| : , : , : |
95 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.real_pos_within_real |
96 | theorem | | ⊢ |
| proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
97 | theorem | | ⊢ |
| proveit.numbers.number_sets.rational_numbers.int_within_rational |
98 | instantiation | 99, 100, 101 | ⊢ |
| : , : , : |
99 | theorem | | ⊢ |
| proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
100 | theorem | | ⊢ |
| proveit.numbers.number_sets.integers.nat_within_int |
101 | theorem | | ⊢ |
| proveit.numbers.numerals.decimals.nat2 |