logo

Expression of type Equals

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import a, b, k, theta
from proveit.logic import Equals
from proveit.numbers import Add, Exp, Mult, e, i, pi, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Exp(a, k)
sub_expr2 = Exp(e, Mult(two, pi, i, theta, k))
sub_expr3 = Exp(Add(a, b), k)
sub_expr4 = Exp(e, Mult(two, pi, i, b))
expr = Equals(Mult(sub_expr1, sub_expr2, sub_expr3, sub_expr4), Mult(sub_expr1, Mult(sub_expr2, sub_expr3), sub_expr4)).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(a^{k} \cdot \mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \theta \cdot k} \cdot \left(a + b\right)^{k} \cdot \mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot b}\right) =  \\ \left(a^{k} \cdot \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \theta \cdot k} \cdot \left(a + b\right)^{k}\right) \cdot \mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot b}\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 23
operands: 5
4Operationoperator: 23
operands: 6
5ExprTuple7, 13, 14, 9
6ExprTuple7, 8, 9
7Operationoperator: 17
operands: 10
8Operationoperator: 23
operands: 11
9Operationoperator: 17
operands: 12
10ExprTuple32, 31
11ExprTuple13, 14
12ExprTuple20, 15
13Operationoperator: 17
operands: 16
14Operationoperator: 17
operands: 18
15Operationoperator: 23
operands: 19
16ExprTuple20, 21
17Literal
18ExprTuple22, 31
19ExprTuple27, 28, 29, 33
20Literal
21Operationoperator: 23
operands: 24
22Operationoperator: 25
operands: 26
23Literal
24ExprTuple27, 28, 29, 30, 31
25Literal
26ExprTuple32, 33
27Literal
28Literal
29Literal
30Variable
31Variable
32Variable
33Variable